How-To: Build a Web Application with Ajax

The term AJAX, originally coinedby Jesse James Garrett of Adaptive
Path in his essay AJAX: A New Approach To Web Applications,isan
acronym for “Asynchronous JavaScript And XML.” That's a bit of a
mouthful, butit’s simply describinga technique that uses JavaScript
to refresh a page’s contents from a web server without having to
reload the entire page. Thisis different from the traditional method of
updating web pages, which requires the browser to refresh the entire
page in order to display any changes to the content.

Similartechniques have been around in one form or another (often
achieved with the help of some clever hacks) for quite a while. But the
increasing availability of the XMLHttpRequest class in browsers, the
coining of the catchy term AJAX, and the advent of a number of high-
profile examples such as Google Maps, Gmail, Backpack, and Elickr,
have allowed these kinds of highly interactive web applicationsto
begin to gain traction in the development world.

As the term AJAX has become more widespread, its definitionhas
expanded to refer more generally to browser-based applications that
behave much more dynamically than old-schoolweb apps. This new
crop of AJAX web applications make more extensive use of
interaction techniques like edit-in-place text, drag-and-drop, and CSS
animations or transitions to effect changes within the userinterface.
This tutorial will explain those techniques,and show you how to
develop AJAX web applications of your own.

This tutorial is an excerpt from my new book, Build Your Own AJAX
Web Applications. In the three chapters presented here, we'll discuss
the basics of AJAX and learn how it ticks, before delving into the
wonderful world of XMLHttpRequest. After we've played around with
it, exploring its inner workings, making requests, and updating our
application page asynchronously, we begin to develop our first true
AJAX application.

http://maps.google.com/
http://mail.google.com/
http://www.backpackit.com/
http://flickr.com/
https://www.sitepoint.com/premium/library
https://www.sitepoint.com/premium/library

It's going to be quite aride, so | hope you're ready for some adventure!
If you'd rather read these chapters to offline, download the .pdf
version of them. Butnow, let's get a solid grounding in AJAX.

Chapter 1. AJAX: the Overview
He's escaping, idiot! Dispatch War Rocket Ajax! To bring back his

body!
— General Kala, Flash Gordon

AJAX Web Applications

AJAX can be a great solution formany web development projects — it
can empower web apps to step up and take over a lot of the ground
that previously was occupied almost exclusively by desktop
applications.

All the same, it's importantto keep in mind that AJAX is not a sort of
magic fairy dust that you can sprinkle on yourapp to make it whizzy
and cool. Like any other new developmenttechnique, AJAX isn't
difficultto mis-use, and the only thing worse than a horrible, stodgy,
old-school web app is a horrible, poorly executed AJAX web app.

When you apply it to the right parts of your web application, in theright
ways, AJAX can enhance users’ experience of your application
significantly. AJAX can improve the interactivity and speed of your
app, ultimately making that application easier, more fun,and more
intuitive to use.

Often, AJAX applications are described as being “like a desktop
applicationinthe browser.” This is a fairly accurate description —
AJAX web apps are significantly more responsive than traditional, old-
fashioned web applications,and they can provide levels of interactivity
similarto those of desktop applications.

But an AJAX web app is still a remote application, and behaves
differently from a desktop application thathas access to local
storage. Part of your job as an AJAX developeris to craft applications

https://www.sitepoint.com/show-modal-popup-after-time-delay/
https://www.sitepoint.com/show-modal-popup-after-time-delay/

that feel responsive and easy to use despite the communicationthat
must occur between the app and a distant server. Fortunately, the
AJAX toolbox gives you a number of excellenttechniquesto
accomplish exactly that.

The Bad Old Days

One of the first web development tasks that moved beyond serving
simple, static HTML pages was the technique of building pages
dynamically on the web server using datafrom a back-end data store.

Back inthe “bad old days” of web development, the only way to create
this dynamic, database-driven content was to construct the entire
page on the server side, using eithera CGlI script (most likely written in
Perl), or some server component that could interpret a scripting
language (such as Microsoft's Active Server Pages). Even a single
changeto that page necessitated a round trip from browser to server
— onlythen could the new content be presented to the user.

In those days, the normal model for a web application’suserinterface
was a web form that the user would fill out and submit to the server.
The server would process the submitted form, and send an entirely
new page back to the browser for display as a result. So, for example,
the completion of a multi-step, web-based “wizard” would require the
user to submita form — thereby prompting a round-trip between the
browser and the server — for each step.

Granted, this was a huge advance on static web pages, but it was still
a far cry from presenting a true “application” experience to end-users.

Prehistoric AJAX

Early web developers immediately began to look for tricks to extend
the capabilities of that simple forms-based model, as they strove to
create web applications that were more responsive and interactive.
These hacks, while fairly ad hoc and crude, were the first steps web
developers took toward the kind of interactivity we see in today’s

AJAX applications. But, while these tricks and workarounds often
provided serviceable, working solutions, theresulting code was not a
pretty sight.

Nesting Framesets

One way to get around the problem of having to reload the entire page
in order to display even the smallest changeto its content was the
hideous hack of nesting framesets within other framesets, often
several levels deep. This technique allowed developers to update only
selected areas of the screen, and even to mimic the behavior of tab-
style navigation interfaces in which users’ clicking on tabs in one part
of the screen changed contentin anotherarea.

Thistechnique resulted in horrible, unmaintainable code with
profusions of pages that had names like
EmployeeEditWizardMiddleLowerRight.asp.

The Hidden iframe

The addition of the i frame in browsers like Internet Explorer 4 made
things much less painful. The ability to hide the iframe completely led
to the development of another neat hack: developers would make
HTTP requests to the server using a hidden iframe, theninsert the
contentinto the page using JavaScriptand DHTML. This provided
much of the same functionality that's available through modern AJAX,
including the ability to submit data from forms without reloading the
page — a feat that was achieved by having the form submitto the
hidden iframe. The result was returned by the server to the i frame,
where the page’s JavaScript could accessiit.

The big drawback of this approach (beyond the fact that it was, after
all, a hack) was the annoying burden of passing databack and forth
between the main document and the documentin the iframe.

Remote Scripting

Another early AJAX-like technique, usually referred to as remote
scripting, involved setting the src attribute of a <script> tag to load
pages that contained dynamically generated JavaScript.

This had the advantage of being much cleanerthan the

hidden i frame hack, as the JavaScript generated on the server would
load rightinto the main document. However, only simple GET requests
were possible usingthis technique.

What Makes AJAX Cool

Thisis why AJAX developmentis such an enormous leap forward for
web development: instead of having to send everything to the server
in a single, huge mass, then wait for the server to send back a new
page for rendering, web developers can communicate with the server
in smallerchunks, and selectively update specific areas of the page
based on the server's responsesto thoserequests. This is where the
word asynchronousin the AJAX acronym originated.

It's probably easiest to understand the idea of an asynchronous
system by considering its opposite —a synchronous system.Ina
synchronous system, everything occurs in order. If a car race was a
synchronous system, itwould be a very dull affair. The car that started
first on the grid would be the first across the finish line, followed by
the car that started second, and so on. There would be no overtaking,
and if a car broke down, the traffic behind would be forced to stop and
wait whilethe mechanics made theirrepairs.

Traditional web apps use a synchronous system: you must wait for
the server to send you the first page of a system before you can
request the second page, as showninFigure1.1.

Web Browser Web Server
User requests a page
L A
- __R?_‘?_ues’t A — f |III
-____E}/_/
User waits... Server processes page
|"lI _'_'__.--"' ol - h
."I - P.Eﬂ’ﬂﬂf---""#
[et
Al
™y
=
5
ser interacts .
u\jith pige Server waits...
T
-------"-\-____ zl!'
~ /
User waits... " Server processes page
| - -
Vo se B
o _—
[opesPt
L\ B _d_‘__d_--'
)

Figure 1.1. A traditional web app is a synchronous system

An asynchronous carrace would be a lot more exciting. The car in
pole position could be overtaken on the first corner, and the car that
starts from the back of the grid could weave its way through the field
and cross the finish linein third place. The HTTP requests from the

browserin an AJAX application work in exactly this way. It's this
ability to make lots of small requests to the server on a needs-basis
that makes AJAX development so cool. Figure 1.2 shows an AJAX
application makingasynchronousrequeststo a web server.

S

Web Browser
User requests initial
page —
xi‘?ﬂueﬂ;'“
User waits...
IH'I__ --"---f- -----5'3
v.efr‘??i
\i--- -|
User interacts §
with page ™
Page sends many }c'e —L_
HTTP requests -H.?_”_'_E'Sf B
R e
st ¢
User continues to
interact with page
S o
I — E-
[ResPO™
Page receives N —T
responses to requests, 4 1 -
possibly in a different A ’n‘ie B
order to that in which | REEP?____,-----""

|
they were sent N {/

Webh Server

Server processes page

Server processes
requests

Figure 1.2. An AJAX web app is an asynchronous system

The end resultis an application that feels much more responsive, as
users spend significantly less time waiting for requests to process,
and don’thave to wait for an entire new web page to come across the
wire, and be rendered by their browsers, before they can view the
results.

AJAX Technologies

The technologiesthatare usedto build AJAX web applications
encompass a number of different programming domains, so AJAX
developmentis neitheras straightforward as regular applications
development, noras easy as old-school web development.

On the other hand, the fact that AJAX development embraces so
many differenttechnologies makes it a lot more interesting and fun.
Here's a brief listing of the technologiesthat work togetherto make
an AJAX web application:

. XML

the W3C DOM
CSS
XMLHttpRequest
JavaScript

Through therest of this chapter, we'll meet each of thesetechnologies
and discusstheroles they playin an AJAX web application.

Data Exchange and Markup: XML

XML (XML stands for Extensible Markup Language — not that anyone
ever callsit that outside of textbooks.) is where AJAX gets its letter
“X." Thisis fortunate, because tech acronyms are automatically seen
as being much coolerif they contain the letter “X.” (Yes, | am kidding?)

Data Exchange Lingua Franca

XML often serves as the main data format used in the asynchronous
HTTP requests that communicate between the browser and the server

in an AJAX application. Thisrole plays to XML's strengths as a neutral
and fairly simple data exchange format, and also meansthat it's
relatively easy to reuse or reformat contentif the need arises.

There are, of course, numerous otherways to format your data for
easy exchange between the browser and the server (such as CSV
(comma separated values), JSON (JavaScript object notation), or
simply plain text), but XML is one of the most common.

XML as Markup

The web pages in AJAX applications consist of XHTML markup, which
is actually justa flavor of XML. XHTML, as the successorto HTML, is
very similarto it. It's easily picked up by any developerwho’s familiar
with old-school HTML, yet it boasts all the benefits of valid XML.
There are numerous advantages tousing XHTML:

. It offerslots of standard tools and script libraries for viewing,
editing, and validating XML.

. It's forward-compatible with newer, XML-compatible browsers.

. It works with eitherthe HTML Document Object Model (DOM) or
the XML DOM.

« It's more easily repurposed for viewing in non-browser agents.

Some of the more pedantic folks in the development community insist
that people should notyet be using XHTML. They believe very strongly
that XHTML, sinceitis actual XML, should notbe used at all unless it
can be served with a properHTTP Content-Type header

of application/xhtml+xml (text/xml and application/xml
would also be okay, though they'reless descriptive) forwhich, at
present, there is still limited browser support. (Internet Explorer 6 and
7 do not supportit at all.)

In practice, you can serve XHTML to the browser with a Content-
Type of text/html, as all the mainstream browsers render correctly
all XHTML documents served as text/html. Although browsers will
treat your code as plain old HTML, other programs can still interpret it

as XML, so there’s no practical reason not to “future-proof” your
markup by using it.

If you happen to disagree with me, you can chooseinstead to develop
usingthe older HTML 4.01 standard. This is still a viable web
standard, and is a perfectly legitimate choice to make in developing
your web application.

XHTML and this Book

Most of the code examples in this book will use XHTML 1.0 Strict. The
iframe elementis not available in Strict, so the few code examples we
show usingthe iframe will be XHTML 1.0 Transitional.

The World Wide Web Consortium maintains an FAQ on the differences
between HTML and XHTML.

W3C Document Object Model

The Document Object Model (DOM) is an object-oriented
representation of XML and HTML documents, and provides an API for
changing the content, structure, and style of those documents.

Originally, specific browsers like Netscape Navigator and Internet
Explorer provided differing, proprietary ways to manipulate HTML
documents using JavaScript. The DOM arose from efforts by the
World Wide Web Consortium (W3C) to provide a platform-and
browser-neutral way to achieve the same tasks.

The DOM represents the structure of an XML or HTML document as
an object hierarchy, which is ideal for parsing by standard XML tools.

DOM Manipulation Methods

JavaScript provides a large API for dealing with these DOM structures,
in terms of both parsing and manipulatingthe document. Thisis one
of the primary ways to accomplishthe smaller, piece-by-piece
changesto a web page that we see in an AJAX application. (Another

https://www.w3.org/MarkUp/2004/xhtml-faq
https://www.w3.org/MarkUp/2004/xhtml-faq

methodis simplyto changethe innerHTML property of an element.
This method is not well documentedin any standard, though it's
widely supported by mainstream browsers.)

DOM Events

The otherimportant function of the DOM is that it provides a standard
means for JavaScript to attach events to elements on a web page.
This makes possible muchricheruserinterfaces, becauseit allows
you to give users opportunities to interact with the page beyond
simplelinks and form elements.

A great example of thisis drag-and-drop functionality, which lets users
drag pieces of the page around on the screen, and drop them into
place to trigger specific pieces of functionality. This kind of feature
usedto exist onlyin desktop applications, but now it works just as
well in the browser, thanks to the DOM.

Presentation: CSS

CSS (Cascading Style Sheets) provides a unified method for
controlling the appearance of user interface elements in yourweb
application. You can use CSS to change almost any aspect of the way
the page looks, from font sizes, colors, and spacing, to the positioning
of elements.

In an AJAX application,one very good use of CSS is to provide user-
interface feedback (with CSS-driven animations and transitions), orto
indicate portions of the page with which the user can interact (with
changesto color or appearance triggered, for example, by
mouseovers). Forexample, you can use CSS transitions to indicate
that some part of yourapplication is waiting foran HTTP request
that's processing on the server.

CSS manipulation figures heavily in the broader definition of the term
AJAX — invarious visual transitions and effects, as well as in drag-
and-drop and edit-in-place functionality.

Communication: XMLHt tpRequest

XMLHttpRequest, a JavaScript class with a very easy-to-use
interface, sends and receives HTTP requests and responses to and
from web servers. The XMLHt tpRequest classis what makes true
AJAX application development possible. The HTTP requests made
with XMLHt tpRequest work just as if the browser were making
normal requests to load a page or submita form, but withoutthe user
ever havingto leave the currently loaded web page.

Microsoftfirstimplemented XMLHt tpRequest inInternet Explorer 5
for Windows as an ActiveX object. The Mozilla project provided a
JavaScript-native version with a compatible API in the Mozilla
browser, starting in version 1.0. (It's also available in Firefox, of
course.) Apple has added XMLHt tpRequest to Safari since version
1.2.

The response from the server — either an XML document or a string of
text — can be passedto JavaScript to use however the developer sees
fit — often to update some piece of the web application’s user
interface.

Putting it All Together: JavaScript

JavaScriptis the glue that holds your AJAX application together. It
performs multipleroles in AJAX development:

. controlling HTTP requests that are made
using XMLHttpRequest

. parsingthe result that comes back from the server, using either
DOM manipulationmethods, XSLT, or custom methods,
dependingon the data exchange format used

. presentingtheresulting data in the user interface, either by using
DOM manipulation methods to insert contentinto the web page,
by updating an element’s innerHTML property, or by changing
elements’ CSS properties

Because of its long history of use in lightweight web programming
(and at the hands of inexperienced programmers), JavaScript has not
been seen by many traditional application developers as a “serious
programming language,” despite the fact that, in reality, it's a fully-
featured, dynamic language capable of supporting object-oriented
programming methodologies.

The misperception of JavaScriptas a “toy language”is now changing
rapidly as AJAX developmenttechniques expand the power and
functionality of browser-based applications. As a result of the advent
of AJAX, JavaScript now seems to be undergoing something of a
renaissance, and the explosive growth in the number of JavaScript
toolkits and libraries available for AJAX developmentis proof of the
fact.

Summary

In this chapter, we had a quick overview of AJAX and the technologies
that make it tick. We looked at some of the horrible coding contortions
that developers had to endure back in the bad old days to create
something resembling an interactive Ul, and we saw how AJAX offers
a hugeimprovement on those approaches. With a decentcommand
of the building blocks of AJAX — XML, the DOM, CSS,
XMLHttpRequest, and JavaScript, which ties them all together — you
have everything you need to start building dynamic and accessible
AJAX sites.

Chapter 2. Basic XMLHttpRequest

| can’t wait to share this new wonder, The people will all see its light,
Let them all make their own music, The priests praise my name on
this night.

— Rush, Discovery

It's XMLHt tpRequest that gives AJAX its true power: the ability to
make asynchronous HTTP requests from the browser and pull down
contentin small chunks.

Web developers have been using tricks and hacks to achieve this for a
long time, while suffering annoying limitations: the invisible iframe
hack forced us to pass data back and forth between the parent
documentandthe documentinthe iframe, and even the “remote
scripting” method was limited to making GET requests to pages that
contained JavaScript.

Modern AJAX techniques, whichuse XMLHttpRequest, provide a huge
improvement over these kludgy methods, allowing yourapp to make
both GET and POST requests without ever completely reloading the

page.

In this chapter, we'll jump rightin and build a simple AJAX web
application — a simple site-monitoring applicationthat pings a page
on a web server to a timed schedule. Butbefore we start making the
asynchronous HTTP requests to poll the server, we'll need to simplify
the use of the XMLHttpRequest class by taking care of all of the little
browser incompatibilities, such as the different ways XMLHttpRequest
objects are instantiated, inside a single, reusable library of code.

A Simple AJAX Library

One approach to simplifying the use of the XMLHt tpRequest class
would be to use an existing library of code. Thanks to the increasing
popularity of AJAX development, there are literally dozens of libraries,
toolkits, and frameworks available that

make XMLHt tpRequest easierto use.

But, as the code for creating an instance of

the XMLHt tpRequest class is fairly simple, and the API forusingitis
easy to understand, we'll just write a very simple JavaScript library
that takes care of the basic stuff we need.

Stepping through the process of creating yourown library will ensure
you know how the XMLHt tpRequest class works, and will help you
get more out of those other toolkits or libraries when you do decide to
use them.

Starting our Ajax Class

We'll start by creating a basic class, called 2jax, in which we'll wrap
the functionality of the XMLHt tpRequest class.

I've Never done Object Oriented Programming in JavaScript — Help!

In this section, we'll start to create classes and objectsin JavaScript.
If you've never done this before, don'tworry — it's quite simple as long
as you know the basics of object oriented programming.

In JavaScript, we don't declare classes with complex syntax like we
wouldin Java, C++ orone of the .NET languages; we simply write a
constructor function to create an instance of the class. All we need to
dois:

. providea constructorfunction —the name of this functionis the
name of your class

. add propertiesto the objectthat’s being constructed using the
keyword this, followed by a period and the name of the property

. add methodsto the objectin the same way we'd add properties,
using JavaScript's special function constructor syntax

Here's the codethat creates a simpleclass called Helloworld:

function HelloWorld() {
this.message = 'Hello, world!';
this.sayMessage = function() {
window.alert (this.message) ;
}i

}
JavaScript's framework for object oriented programming is very

lightweight, but functions surprisingly well once you get the hang of it.

More advanced object oriented features, such as inheritance and
polymorphism, aren’t available in JavaScript, but these features are
rarely needed on the client sidein an AJAX application. The complex
business logic forwhich these features are useful should always be
on the web server, and accessed usingthe XMLHt tpRequest class.

In this example, we create a class called HelloWorld with one
property (message) and one method (sayMessage). To use this
class, we simply call the constructor function, as shown below:

var hw = new HelloWorld() ;
hw.sayMessage () ;
hw.message = 'Goodbye';

hw.sayMessage () ;

Here, we create an instance of HelloWorld (called hw), then use this
objectto display two messages. The first time we call sayMessage,
the default “Hello, world!” message is displayed. Then, after changing
our object'smessage property to “Goodbye,” we

call sayMessage and “Goodbye” is displayed.

Don'tworry if this doesn’t make too much sense at the moment. As
we progress through the buildingof our 2jax class, it will become
clearer.

Here are the beginnings of our Ajax class’s constructor function:

Example 2.1. ajax.Jjs (excerpt)

function Ajax () {

this.req = null;

this.url = null;
this.method = 'GET';
this.async = true;
this.status = null;
this.statusText = '';
this.postData = null;
this.readyState = null;
this.responseText = null;
this.responseXML = null;
this.handleResp = null;

this.responseFormat = 'text', // 'text', 'xml',
or 'object'

this.mimeType = null;

}

This code justdefines the properties we'll needin our Ajax classin
order to work with XMLHt tpRequest objects. Now, let's add some
methods to our object. We need some functions that will set up

an XMLHt tpRequest object andtell it how to make requests for us.

Creating an XMLHttpRequest Object

First,we'll add an init method, which will create

an XMLHttpRequest object forus.

Unfortunately, XMLHt tpRequest is implementedslightly differently in
Firefox (in this book, whenever| explain how somethingworks in

Firefox, I'm referring to all Mozilla-based browsers, including Firefox,
Mozilla, Camino, and SeaMonkey), Safari, and Opera than it was in
Internet Explorer’s original implementation (interestingly, Internet
Explorer version 7 now supports the same interface as Firefox, which
promises to simplify AJAX developmentin the future), so you'll have
to try instantiating the objectin a number of different ways if you're
not targeting a specific browser. Firefox and Safari

create XMLHt tpRequest objectsusingaclass

called xMLHt tpRequest, while Internet Explorer versions 6 and
earlier use a special class called ActiveXObject that’'s builtinto
Microsoft's scriptingengine. Although these classes have different
constructors, they behave in the same way.

Cross-browser Code

Fortunately, most modern browsers (Internet Explorer 6, Firefox 1.0,
Safari 1.2, and Opera 8, or later versions of any of these browsers)
adhere to web standards fairly well overall, so you won’t have to do
lots of browser-specific branchingin your AJAX code.

This usually makes a browser-based AJAX application faster to
develop and deploy cross-platform than a desktop application. As the
power and capabilities available to AJAX applications increase,
desktop applications offer fewer advantages from a user-interface
perspective.

The init methodlooks like this:

Example 2.2. ajax.]js (excerpt)

this.init = function () {

if (!this.req) {

try {

// Try to create object for Firefox, Safari,
IE7, etc.

this.req = new XMLHttpRequest() ;
}
catch (e) {

try {

// Try to create object for later versions
of IE.

this.req = new
ActiveXObject ("MSXMLZ . XMLHTTP"') ;

}
catch (e) {
try A

// Try to create object for early
versions of IE.

this.req = new
ActiveXObject ('Microsoft.XMLHTTP') ;

}
catch (e) {

// Could not create an XMLHttpRequest
object.

return false;

}

return this.reqg;

I

The init method goesthrough each possible way of creating

an XMLHt tpRequest object untilit creates one successfully. This
objectis then returned to the calling function.

Degrading Gracefully

Maintaining compatibility with older browsers (by “older” | mean
anything olderthan the “modern browsers” | mentioned in the previous
note) requires a lot of extra code work, so it’s vital to define which
browsers your application should support.

If you know your application will receive significant traffic via older
browsers that don’t supportthe XMLHtml1Request class(e.g.,
Internet Explorer 4 and earlier, Netscape 4 and earlier), you will need
eitherto leave it out completely, or write your code so that it degrades
gracefully. That means that instead of allowing your functionality
simplyto disappearin less-capable browsers, you code to ensure that
users of those browsers receive something that's functionally
equivalent, thoughperhapsin a less interactive or easy-to-use format.

It's also possible that your web site will attract users who browse with
JavaScript disabled. If you want to cater to these users, you should
provide an alternative, old-school interface by default, which you can
then modify on-the-fly — using JavaScript — for modern browsers.

Sending a Request

We now have a method that creates an XMLHt tpRequest. So let’s
write a functionthatuses it to make a request. We start the doReq
method like this:

Example 2.3. ajax.Jjs (excerpt)

this.doReqg = function () {
if (!this.init()) {

alert ('Could not create XMLHttpRequest
object.');

return;

}i

This first part of dorReqg calls init to create an instance of

the XMLHttpRequest class, and displays a quick alert if it's not
successful.

Setting Up the Request

Next, our code callsthe open methodon this.reqg — ournew
instance of the XMLHt tpRequest class — to begin setting up the
HTTP request:

Example 2.4. ajax.]js (excerpt)

this.doReqg = function () {

if (!this.init()) {

alert ('Could not create XMLHttpRequest
object.');

return;

}

this.reqg.open(this.method, this.url,
this.async);

}i
The open method takes three parameters:

1. Method — This parameter identifies thetype of HTTP request
method we'll use. The most commonlyused methods are GET and
POST.

Methods are Case-sensitive

According to the HTTP specification (RFC 2616),the names of these
request methods are case-sensitive. And since the methods described
in the spec are defined as being all uppercase, you should always
make sure you type the method in all uppercase letters.

2. URL - This parameter identifies the page being requested (or
posted to if the methodis POST).

Crossing Domains

Normal browser security settings will not allow youto send HTTP
requests to another domain. Forexample, a page served from ajax.net
would not be able to send a request to remotescripting.comunless
the user had allowed such requests.

3. Asynchronous Flag — If this parameter is set to true, your
JavaScript will continue to execute normally while waiting for a

responseto the request. As the state of the request changes, events
are fired so that you can deal with the changing state of the request.

If you set the parameter to false, JavaScript execution will stop until
the response comes back from the server. This approach has the
advantage of being alittle simplerthan using a callback function, as
you can start dealing with the response straight after you send the
request in your code, butthe big disadvantageis that yourcode
pauses whilethe request is sent and processed on the server, and the
responseis received. As the abilityto communicate with the server
asynchronously is the whole point of an AJAX application, this should
be set to true.

In our Ajax class,the method and async properties are initialized to
reasonable defaults (GET and true), but you'll always have to set the
target URL, of course.

Setting Up the onreadystatechange EventHandler

As the HTTP request is processed on the server, its progress is
indicated by changes to the readyState property. This property is an
integerthat represents one of the following states, listed in order from
the start of the request to its finish:

« 0:uninitialized - open has notbeen called yet.

1: loading — send has not been called yet.

2:loaded — send has been called, butthe responseis not yet
available.

3:interactive — The responseis being downloaded, and the
responseText property holds partial data.

4: completed — The response has been loaded and the request is
completed.

An XMLHt tpRequest object tells you about each changein state by
firinga readystatechange event. Inthe handlerforthis event,
check the readystate of the request, and when the request

completes (i.e., when the readyState changesto 4), you can handle
the server's response.

A basicoutlineforour Ajax code would look like this:

Example 2.5. ajax.]js (excerpt)

this.doReqg = function () {
if (!this.init()) {

alert ('Could not create XMLHttpRequest
object.');

return;

}

this.reg.open(this.method, this.url,
this.async);

var self = this; // Fix loss-of-scope in inner
function

this.reqg.onreadystatechange = function() {
i1f (self.reqg.readyState == 4) {

// Do stuff to handle response

We'll discuss howto “do stuffto handleresponse”in justa bit. For
now, just keep in mind that you need to set up this event handler
before the requestis sent.

Sending the Request

Use the send method of the XMLHt tpRequest class to start the
HTTP request, like so:

Example 2.6. ajax.Jjs (excerpt)

this.doReqg = function () {
if (!'this.init()) {

alert ('Could not create XMLHttpRequest
object.');

return;

}

this.reg.open(this.method, this.url,
this.async);

var self = this; // Fix loss-of-scope in inner
function

this.reqg.onreadystatechange = function() {
if (self.reqg.readyState == 4) {

// Do stuff to handle response

}i
this.reqg.send(this.postData) ;

Yy

The send method takes one parameter, which is used for POST data.
When the requestis a simple GET that doesn’t pass any data to the
server, like our current request, we set this parameter to null.

Loss of Scopeand this

You may have noticedthat onreadystatechange includesa weird-
looking variable assignment:

Example 2.7. ajax.]js (excerpt)

var self = this; // Fix loss-of-scope in inner
function

This new variable, self, isthe solutionto a problem called “loss of
scope” that’s often experienced by JavaScript developers using
asynchronousevent handlers. Asynchronous event handlers are
commonly usedin conjunction with XMLHt tpRequest, and with
functionslike setTimeout or setInterval.

The this keywordis used as shorthand in object-oriented JavaScript
code to refer to “the current object.” Here's a quick example — a class
called scopeTest:

function ScopeTest () {
this.message = 'Greetings from ScopeTest!';

this.doTest = function () {

alert (this.message) ;
}:
}

var test = new ScopeTest()

test.doTest () ;

This code will create an instance of the ScopeTest class, then call
that object’'s doTest method, which will display the message
“Greetings from ScopeTest!” Simple, right?

Now, let's add some simple XMLHt tpRequest codeto

our ScopeTest class. We'll send a simple GET request for your web
server's home page, and, when a responseisreceived, we'll display
the content of both this.message and self.message.

function ScopeTest () {
this.message = 'Greetings from ScopeTest!';
this.doTest = function() {

// This will only work in Firefox, Opera and
Safari.

this.req = new XMLHttpRequest () ;
this.req.open ('GET', '/index.html', true);
var self = this;
this.reqg.onreadystatechange = function() {

if (self.reqg.readyState == 4) {

var result = 'self.message is ' +
self.message;

result += 'n';

result += 'this.message is ' +
this.message;

alert (result) ;

}

this.reqg.send (null);
}i
}

var test = new ScopeTest():

test.doTest () ;
So, what messageis displayed? Theanswer is revealed in Figure 2.1.

We can see that self.message isthe greeting message that we're
expecting, butwhat's happenedto this.message?

Using the keyword this is a convenient way to refer to “the object
that's executing this code.” But this has one small problem — its
meaning changes whenit's called from outside the object. This is the
result of something called execution context. All of the codeinsidethe
objectruns inthe same execution context, but code that's run from
other objects — such as event handlers — runsin the calling object’s
execution context. What this means is that, when you're writing object-
oriented JavaScript, you won't be able to usethe this keyword to
refer to the object in code for event handlers

(like onreadystatechange above). This problemis called loss of
scope.

If this conceptisn’t 100% clear to you yet, don’t worry too much about
it. We'll see an actual demonstration of this problem in the next
chapter. In the meantime, justkind of keep in mind that if you see the
variable selfin code examples, it's been included to deal with a loss-
of-scope problem.

hitp://localhost

I_x";'x self.message is Greetings from ScopeTest!
this.message is undefined

Figure 2.1. Message displayed by ScopeTestclass
Processing the Response

Now we're ready to write some codeto handle the server's response
to our HTTP request. Rememberthe “do stuffto handleresponse”
commentthat we leftin the onreadystatechange eventhandler?
We'll, it's time we wrote some code to do that stuff! The function
needsto do three things:

1. Figureout if the responseis an error or not.
2. Prepare the responsein the desired format.
3. Pass the responseto the desired handler function.

Includethe code below inthe innerfunction of our A5ax class:

Example 2.8. ajax.]Js (excerpt)

this.reg.onreadystatechange = function() {

var resp = null;,
if (self.reqg.readyState == 4) {
switch (self.responseFormat) {
case 'text':
resp = self.req.responselext;
break;
case 'xml':
resp = self.req.responseXML;
break;
case 'object':
resp = req;
break;

}

if (self.reqg.status >= 200 && self.reqg.status
<= 299) {

self.handleResp (resp) ;

}
else {

self.handleErr (resp) ;

Yy

When the response completes, a code indicating whetheror not the
request succeeded isreturnedin the status property of

our XMLHttpRequest object. The status property containsthe HTTP
status code of the completed request. This could be code 404 if the
requested page was missing, 500 if an error occurred in the server-
side script, 200 if the request was successful,and so on. A full list of
these codes is provided inthe HTTP Specification (REC2616).

No Good with Numbers?

If you have trouble remembering the codes, don’t worry: you can use
the statusText property, which contains a short message that tellsyou
a bit more detail about the error (e.g., “Not Found,” “Internal Server
Error,” “OK").

Our Ajax classwill be able to provide the response from the server in
three different formats: as a normal JavaScript string, as an XML
documentobject accessible viathe W3C XML DOM, and as the

actual xMLHt tpRequest objectthat was used to make the request.
These are controlled by the Ajax class’s responseFormat property,
which can be setto text, xml or object.

The content of the response can be accessed via two properties of
our XMLHt tpRequest object:

+ responseText — This property containsthe response fromthe
server as anormal string. In the case of an error, it will contain
the web server's error page HTML. As long as a responseis
returned (thatis, readyState becomes 4), this property will
contain data, though it may not be what you expect.

« responsexXML — This property contains an XML document
object. If the responseis not XML, this property will be empty.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

OurAjax classinitializesits responseFormat property to text, so by
default, your response handlerwill be passed the content from the
server as a JavaScript string. If you're working with XML content, you
can changethe responseFormat property to xm1, which will pull out
the XML document objectinstead.

There's one more option you can useif you want to get really fancy:
you can return the actual XMLHt tpRequest objectitselfto your
handlerfunction. This gives you direct access to things like the status
and statusText properties,and mightbe usefulin casesin which
you want to treat particular classes of errors differently — for example,
completing extralogging in the case of 404 errors.

Setting the Correct Content-Type

Implementations of XMLHt tpRequest inall major browsers require
the HTTP response’s Content-Type to be set properly in order for
the responseto be handled as XML. Well-formed XML, returned with a
contenttype of text/xml (orapplication/xml, or

even application/xhtml+xml), will properly populate

the responseXML property of an XMLHttpRequest object;non-XML
contenttypes will resultin values of null or undefined forthat
property.

However, Firefox, Safari, and Internet Explorer 7 provide a way

around XMLHt tpRequest's pickinessover XML documents:

the overrideMimeType method of the XMLHttpRequest class. Our
simple Ajax class hooks into this with the setMimeType method:

Example 2.9. ajax.]Js (excerpt)

this.setMimeType = function (mimeType) {

this.mimeType = mimeType;

Y
This method sets the mimeType property.

Then, in our doReg method, we simply
call overrideMimeType insidea try ... catch block,like so:

Example 2.10. ajax.js (excerpt)

reqg.open (this.method, this.url, this.async);
if (this.mimeType) {
try {
reg.overrideMimeType (this.mimeType) ;
}
catch (e) {

// couldn't override MIME type -- IE6 or
Opera?

}

}

var self = this; // Fix loss-of-scope in inner
function

Being able to override Content-Type headers from uncooperative
servers can be very importantin environments in which you don’t have
control over both the front and back ends of your web application.
This is especially true since many of today’s apps access services and

content from a lot of disparate domains or sources. However, as this
techniquewon’twork in Internet Explorer 6 or Opera 8, you may not
find it suitable for usein your applications today.

Response Handler

Accordingto the HTTP 1.1 specification, any response that has a code
between 200 and 299 inclusiveis a successful response.

The onreadystatechange eventhandlerwe've definedlooks at the
status property to get the status of the response. If the code is within

the correct range for a successfulresponse,

the onreadystatechange eventhandlerpasses the responseto the
response handler method (which is set by the handleResp property).

The response handlerwill need to know what the response was, of
course, so we'll pass it the response as a parameter. We'll see this
process in action later, when we talk aboutthe doGet method.

Sincethe handler method is user-defined, the code also does a
cursory check to make sure the method has been set properly before
it tries to execute the method.

Error Handler

If the status property indicates that there's an error with the request
(i.e.,it's outside the 200 to 299 coderange), the server's responseis
passedto the error handlerin the handleErr property. Our Ajax class
already defines a reasonable default for the error handler, so we don't
have to make sure it's defined before we call it.

The handleErr property pointsto a function that looks like this:

Example 2.11. ajax.]js (excerpt)

this.handleErr = function () {
var errorWin;
try {
errorWin = window.open('', 'errorWin');

errorWin.document .body.innerHTML =
this.responseText;

}
catch (e) {

alert ('An error occurred, but the error message
cannot be '

+ 'displayed. This is probably because of
your browser's '

+ 'pop-up blocker.n'

+ 'Please allow pop-ups from this web site if
you want to '

+ 'see the full error messages.n'

| lnl
+ 'Status Code: ' + this.reg.status + 'n'
+ 'Status Description: ' +

this.reqg.statusText);
}

1%

This method checks to make sure that pop-ups are not blocked, then
tries to display the full text of the server’s error page contentin a new
browser window. This codeusesa try ... catch block,soif users
have blocked pop-ups, we can show them a cut-down version of the
error message and tell them howto access a more detailed error
message.

Thisis a decent default for starters, although you may want to show
less informationto the end-user — it all depends on your level of
paranoia. If you want to use your own custom error handler, you can
use setHandlerErr like so:

Example 2.12. ajax.]js (excerpt)

this.setHandlerErr = function (funcRef) {

this.handleErr = funcRef;

}
Or, the One True Handler

It's possible that you mightwant to use a single functionto handle
both successful responsesand errors. setHandlerBoth, a
convenience methodin our Ajax class, sets this up easily forus:

Example 2.13. ajax.]js (excerpt)

this.setHandlerBoth = function (funcRef) {
this.handleResp = funcRef;

this.handleErr = funcRef;

}i
Any function that's passed as a parameter to setHandlerBoth will
handle both successfulresponses and errors.

This setup mightbe useful to a user who sets your

class’s responseFormat property to object, which would cause
the XMLHt tpRequest objectthat's used to make the request —
rather than justthe value of

the responseText or responseXML properties — to be passedto
the response handler.

Aborting the Request

Sometimes, as you'll know from your own experience, a web page will
take a very long time to load. Your web browser has a Stop button, but
what about your Ajax class? Thisis where the abort method comes
into play:

Example 2.14. ajax.js (excerpt)

this.abort = function () {
if (this.req) {
this.reg.onreadystatechange = function() { };
this.reqg.abort();

this.req = null;

Y
This method changesthe onreadystate event handlerto an empty
function, callsthe abort method on yourinstance of

the XMLHt tpRequest class,then destroysthe instanceyou've
created. That way, any properties that have been set exclusively for
the request that's being aborted are reset. Next time a request is
made, the init method will be called and those properties will be
reinitialized.

So, why do we need to changethe onreadystate event handler?
Many implementations of XMLHt tpRequest will fire the onreadystate
event once abortis called, to indicate that the request’s state has
been changed. What's worse is that those events come complete with
a readyState of 4, which indicates that everything completed as
expected (whichis partly true, if you think aboutit: as soon as we call
abort, everything should cometo a stop and ourinstance

of XMLHttpRequest should beready to send another request, should
we so desire). Obviously, we don’t want our response handlerto be
invoked when we abort a request, so we remove the existing handler
justbefore we call abort.

Wrapping it Up

Giventhe code we have so far, the Ajax class needs justtwo thingsin
order to make a request:

. atarget URL
. ahandlerfunction fortheresponse

Let's provide a method called doGet to set both of these properties,
and kick off the request:

Example 2.15. ajax.js (excerpt)

this.doGet

function (url, hand, format) {

this.url = url;

this.handleResp = hand;
this.responseFormat = format || 'text';
this.doReqg() ;

yi

You'll notice that, along with the two expected

parameters, url and hand, the functionhas a third

parameter: format. This is an optional parameter that allows us to
changethe format of the server responsethat’s passed to the handler
function.

If we don’t passina value for format, the responseFormat property
of the Ajax class will defaultto a value of text, which means your
handlerwill be passed the value of the responseText property. You
could, instead, pass xml or object as the format, which would
changethe parameter that’'s being passed to the response handlerto
an XML DOM or XMLHt tpRequest object.

Example: a Simple Test Page

It's finallytimeto put everything we've learned together! Let’s create
an instance of this Ajax class, and useit to send a request and
handle aresponse.

Now that our class’scodeis inafile called ajax. js, any web pages
in which we want to use our Ajax class will need to include the Ajax

codewitha <script type="text/javascript"
src="ajax.js"> tag. Onceour page has access to the Ajax code,

we can create an Ajax object.

Example 2.16. ajaxtest.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

"https://www.w3.0rg/TR/xhtmll/DTD/xhtmll-
strict.dtd">

<html xmlns="https://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type"

content="text/html; charset=1is0-8859-1"
/>

<title>A Simple AJAX Test</title>

<script type="text/javascript"
src="ajax.js"></script>

<script type="text/javascript">
var ajax = new Ajax();
</script>
</head>
<body>
</body>

</html>

This script gives us a shiny, newinstance of the Ajax class. Now, let's
make it do something useful.

To make the most basic request with our 2jax class, we could do
something like this:

Example 2.17. ajaxtest.html (excerpt)

<script type="text/javascript">
var hand = function (str) {
alert (str);
}
var ajax = new Ajax();
ajax.doGet ('/fakeserver.php', hand);

</script>

This creates an instance of our Ajax classthat will make a

simple GET requestto a page called fakeserver.php, and passthe
result back as text to the hand function. If fakeserver.php returned
an XML documentthat you wanted to use, you could do so like this:

Example 2.18. ajaxtest.html (excerpt)

<script type="text/javascript">
var hand = function (str) {

// Do XML stuff here

var ajax = new Ajax();
ajax.doGet ('/fakeserver.php', hand);

</script>

You would want to make absolutely sure in this case that
somepage.phpwas really serving valid XML and that its Content-
Type HTTP response header was set to text/xml (or something
else that was appropriate).

Creating the Page

Now that we have created the Ajax object, and set up a simple
handler function forthe request, it's time to put our code into action.

The Fake Server Page

In the code above, you can see that the target URL for the requestis
setto a page called fakeserver.php. To usethisdemonstration
code, you'll need to serve

both ajaxtest.html and fakeserver.php fromthe same PHP-
enabled web server. You can do this from an IIS web server with some
simple ASP, too. The fake server page is a super-simple page that
simulates the varying response time of a web server using the PHP
code below:

Example 2.19. fakeserver.php

<?php
header ('Content-Type: text/plain');

sleep (rand (3, 12));

print 'ok';

2>
That's all this little scrap of code does: it waits somewhere between
three and 12 seconds, then prints ok.

The fakeserver.php code sets the Content-Type header of the
responseto text/plain. Depending onthe content of the page you
pass back, you might choose another Content-Type for your
response. For example, if you're passing an XML document back to
the caller, you would naturally want to use text/xml.

This works just as well in ASP, although some features (such as
sleep) are not as easily available, as the code below illustrates:

Example 2.20. fakeserver.asp

<

o\

Response.ContentType = "text/plain"
' There is no equivalent to sleep in ASP.

Response.Write "ok"

%>

Throughoutthis book, all of our server-side examples will be written in
PHP, although they could just as easily be written in ASP, ASP.NET,
Java, Perl, or just about any language that can serve contentthrough a
web server.

Usethe setMimeType Method

Imaginethat you have a response that you know contains a valid XML
documentthatyou want to parse as XML, but the server insists on

servingit to you as text/plain. You can force that responseto be
parsed as XML in Firefox and Safari by adding an extra call
to setMimeType, like so:

var ajax = new Ajax();
ajax.setMimeType ('text/xml") ;

ajax.doGet ('/fakeserver.php', hand, 'xml');

Naturally, you should use this approach only when you're certain that
the response from the server will be valid XML, and you can be sure
that the browser is Firefox or Safari.

Hitting the Page

Now comes the moment of truth! Hit your local web server, load

up ajaxtest.html, and see what you get. If everythingis working
properly, there will be a few moments’ delay, and then you'll see a
standard JavaScript alert like the onein Figure 2.2 that says simply
ok.

http://localhost f'>__<|

Figure 2.2. Confirmation that your Ajax class is working as expected

Now that all is well and our Ajax class is functioning properly, it's
time to move to the next step.

Example: a Simple AJAX App

Okay, so using the awesome power of AJAX to spawn a tiny little
JavaScript alert box that reads "ok" is probably not exactly what you
had in mind when you boughtthisbook. Let's implement some
changesto our example code that will make this XMLHttpRequest
stuff a little more useful. At the same time, we'll create that simple

monitoring application| mentioned at the start of this chapter. The
app will ping a web site and report the time it takes to get a response
back.

Laying the Foundations

We'll start off with a simple HTML document that links to two
JavaScript files: ajax. js, which contains ourlibrary,

and appmonitorl.js, which will containthe codefor our
application.

Example 2.21. appmonitorl.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

"https://www.w3.0rg/TR/xhtmll/DTD/xhtmll-
strict.dtd">

<html xmlns="https://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type"

content="text/html; charset=1s0-8859-1"
/>

<title>App Monitor</title>

<script type="text/javascript"
src="ajax.js"></script>

<script type="text/javascript"
src="appmonitorl.js"></script>

</head>
<body>

<div id="pollDiv"></div>
</body>

</html>

You'll notice that there's virtually no contentin the body of the page —
there’s justa single div element. This is fairly typical of web apps that
rely on AJAX functions. Often, much of the content of AJAX apps is
created by JavaScript dynamically, so we usually see a lot less
markup in the body of the page source than we would in a non-AJAX
web application forwhich all the content was generated by the server.
However, where AJAX is not an absolutely essential part of the
application, aplain HTML version of the application should be
provided.

We'll begin our appmonitorl.js filewith somesimple contentthat
makes use of our Ajax class:

Example 2.22. appmonitorl.js (excerpt)

var start = 0;
var ajax = new Ajax();
var doPoll = function () {

start = new Date();

start = start.getTime() ;

ajax.doGet ('/fakeserver.php?start=' + start,
showPoll) ;

}

window.onload = doPoll;

We'll use the start variable to record the time at which each request
starts — this figure will be used to calculate how long each request
takes. We make start a global variable so that we don'thave to gum
up the works of our Ajax class with extra code for timing requests —
we can set the value of start immediately before and after our calls to
the Ajax object.

The ajax variable simply holds aninstance of our Ajax class.

The doPol1 function actually makesthe HTTP requests using
the Ajax class. You should recognize the call to the doGet method
from our original test page.

Notice that we've added to the target URL a query string that has the
start value as a parameter. We're not actually going to use this value
on the server; we're just using itas a random value to deal with
Internet Explorer’'s overzealous caching. IE caches all GET requests
made with XMLHt tpRequest, and one way of disablingthat “feature”
is to append a random value into a query string. The milliseconds
value in start can double as that random value. An alternative to this
approachis to usethe setRequestHeader method of

the XMLHt tpRequest classto setthe If-Modified-Since header
on the request.

Finally, we kick everything off by attaching doPo11 to
the window.onload event.

Handling the Resultwith showPol1

The second parameter we pass to doGet tells the Ajax classto pass
responses to the function showPol1l. Here's the code for that
function:

Example 2.23. appmonitorl.js (excerpt)

var showPoll = function(str) {
var pollResult = '"';

var diff = 0;

var end = new Date();
if (str == 'ok') {
end = end.getTime () ;

diff = (end - start) / 1000;

pollResult = 'Server response time: ' + diff +
' seconds';

t
else {

pollResult = 'Request failed.';
}

printResult (pollResult) ;

var pollHand = setTimeout (doPoll, 15000);

}

Thisis all pretty simple: the function expects a single parameter,
which should bethe string ok returned from fakeserver.php if
everything goes as expected. If the responseis correct, the code does
the quick calculationsneeded to figure outhow long the response
took, and creates a message that contains the result. It passes that
messageto pollResult fordisplay.

In this very simple implementation, anything otherthan the expected
responseresultsin a fairly terse and unhelpfulmessage: Request
failed. We'll make our handling of error conditions more robustwhen
we upgradethis app in the next chapter.

OncepollResult is set,it's passedtothe printResult function:

Example 2.24. appmonitorl.js (excerpt)

function printResult (str) {

var pollDiv =
document.getElementById('pollDiv"') ;

if (pollDiv.firstChild) {
pollDiv.removeChild(pollDiv.firstChild);

}

pollDiv.appendChild (document.createTextNode (str))

The printResult functiondisplaysthe messagethat was sent
from showPol1l insidethe lone div in the page.

Note the test in the code above, which is used to see whether

our div has any child nodes. This checks for the existence of any text
nodes, which could include text that we added to this div in previous
iterations, or the text that was contained insidethe div in the page
markup, and then removes them. If you don’tremove existing text
nodes, the code will simply append the new result to the page as a
new text node: you'll display a long string of text to which more text is
continuallybeing appended.

Why Not Use innerHTML?

You could simply updatethe innerHTML property of the div, like so:

document.getElementById('pollDiv') .innerHTML = str;
The innerHTML property is not a web standard, but all the major
browsers supportit. And, as you can see from the fact that it's a single
line of code (as compared with the fourlines needed for DOM
methods), sometimesiit's just easier to use than the DOM methods.
Neitherway of displayingcontenton your page is inherently better.

In some cases, you may end up choosing amethod based on the
differences in rendering speeds of these two approaches
(innerHTML can be faster than DOM methods). In other cases, you
may base your decision on the clarity of the code, or even on personal
taste.

Starting the Process Over Again

Finally, showPol1 starts the entire process over by schedulinga call
to the original doPol1 functionin 15 secondstime
using setTimeout, as shown below:

Example 2.25. appmonitorl.js (excerpt)

var pollHand = setTimeout (doPoll, 15000);

The fact that the code continuously invokesthe doPo11 function
means that oncethe page loads, the HTTP requests polling

the fakeserver.php page will continueto do so until that page is
closed. The pol1Hand variable is the interval ID that allows you to
keep track of the pending operation, and cancel it

using clearTimeout.

The first parameter of the setTimeout call,doPoll, is a pointerto
the main function of the application;the second represents the length
of time, in seconds, that must elapse between requests.

Full Example Code

Here's all the code from our first trial run with this simple monitoring
application.

Example 2.26. appmonitorl.js

var start = 0;

var ajax = new Ajax();

var doPoll = function () {
start = new Date();

start start.getTime () ;

}

ajax.doGet ('/fakeserver.php?start=' + start,
showPoll) ;

window.onload = doPoll;

var showPoll = function(str) {

var pollResult = '';
var diff = 0O;
var end = new Date();
if (str == 'ok') {
end = end.getTime () ;
diff = (end - start)/1000;

pollResult = 'Server response time:
seconds';

}

else {
pollResult = 'Request failed.';

}

printResult (pollResult) ;

+ diff

var pollHand = setTimeout (doPoll, 15000);

function printResult (str) {

var pollDiv =
document.getElementById ('pollDiv') ;

if (pollDiv.firstChild) {

pollDiv.removeChild(pollDiv.firstChild);

}

pollDiv.appendChild (document.createTextNode (str))

.
14

}
In a bid to follow good software engineering principles, I've separated
the JavaScript code from the markup, and put them in two different

files.

I'll be following a similarapproach with all the example code for this
book, separating each example’'s markup, JavaScript code, and CSS
into separate files. This little monitoringapp is so basic that it has no
CSS file. We'll be adding a few styles to make it look nicer in the next
chapter.

Running the App

Try loading the page in your browser. Drop it into your web server's
root directory, and open the page in yourbrowser.

If the fakeserver.php pageis responding properly, you'll see
something like the display shown in Figure 2.3.

3 App Monitor - Mozilla Firefox

File Edit Mew Go Bookmarks Tools Help

<11:| i E[> T l%l O @ ||_| http: f flacalhost fappraonitar 1, bkl v| @ 5o

server response time: 8.016 seconds

Done

Figure 2.3. Running the simple monitoring application

Further Reading
Here are some onlineresources that will help you learn more about
the techniques and concepts in this chapter.

JavaScript’s Object Model

. http://docs.sun.com/source/816-6409-10/obj.htm
. http://docs.sun.com/source/816-6409-10/0bj2.htm

Check out these two chapters on objects from the Client-Side
JavaScript Guide for version 1.3 of JavaScript, hosted by Sun
Microsystems. The first chapter explains all the basic concepts you
need to understand how to work with objects in JavaScript. The
second goes into more depth about JavaScript's prototype-based
inheritance model, allowingyou to leverage more of the power of
object-oriented coding with JavaScript.

Thisis a brief introduction to creating private instance variables with
JavaScript objects. It will help you get a deeper understanding of
JavaScript's prototype-based inheritance scheme.

XMLHt tpRequest

Here's a good reference page from the Apple Developer Connection. It
gives a nice overview of the XMLHttpRequest class, and a reference
table of its methods and properties.

http://docs.sun.com/source/816-6409-10/obj.htm
http://docs.sun.com/source/816-6409-10/obj2.htm
http://www.crockford.com/javascript/private.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html

This article, originally posted in 2002, continuesto be updated with
new information. ltincludes information on making HEAD requests
(instead of just GET or POST), as well as JavaScript Object Notation
(JSON), and SOAP.

Thisis XULPlanet's exhaustive reference on
the XMLHt tpRequest implementationin Firefox.

Here's anothernice overview, which also shows some of the lesser-
used methods of the XMLHt tpRequest object, such

as overrideMimeType, setRequestHeader,

and getResponseHeader. Again,thisreferenceis focusedon
implementation in Firefox.

Thisis Microsoft's documentation on MSDN of its implementation
of XMLHttpRequest.

Summary
XMLHttpRequest 1s at the heart of AJAX. It gives

scripts within the browser the ability to make
their own requests and get content from the server.
The simple AJAX library we built in this chapter
provided a solid understanding of how
XMLHttpRequest works, and that understanding will
help you when things go wrong with your AJAX code
(whether you're using a library you've built
yourself, or one of the many pre-built toolkits and
libraries listed in Appendix A, AJAX Toolkits). The
sample app we built in this chapter gave us a
chance to dip our toes into the AJAX pool -- now
it's time to dive 1in and learn to swim.

Chapter 3. The "A" in AJAX

http://jibbering.com/2002/4/httprequest.html
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://kb.mozillazine.org/XMLHttpRequest
http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjxmlhttprequest.asp

It's flying over our heads in a million pieces.

-— Willy Wonka, Willy Wonka & the Chocolate
Factory

The "A" in AJAX stands for "asynchronous," and
while it's not nearly as cool as the letter "X,"
that "A" is what makes AJAX development so
powerful. As we discussed 1n Chapter 1, AJAX: the
Overview, AJAX's ability to update sections of an
interface asynchronously has given developers a
much greater level of control over the
interactivity of the apps we build, and a degree of
power that's driving web apps into what was
previously the domain of desktop applications
alone.

Back in the early days of web applications, users
interacted with data by filling out forms and
submitting them. Then they'd wait a bit, watching
their browser's "page loading" animation until a
whole new page came back from the server. Each data
transaction between the browser and server was
large and obvious, which made it easy for users to
figure out what was going on, and what state their
data was 1in.

As AJAX-style development becomes more popular,
users can expect more interactive, "snappy" user

interfaces. This is a good thing for users, but
presents new challenges for the developers working
to deliver this increased functionality. In an AJAX
application, users alter data in an ad hoc fashion,
so 1t's easy for both the user and the application
to become confused about the state of that data.

The solution to both these issues is to display the
application's status, which keeps users informed
about what the application i1s doing. This makes the
application seem very responsive, and gives users
important guidance about what's happening to their
data. This critical part of AJAX web application
development is what separates the good AJAX apps
from the bad.

Planned Application Enhancements

To create a snappy user interface that keeps users
well-informed of the application's status, we'll
take the monitoring script we developed in the
previous chapter, and add some important
functionality to it. Here's what we're going to
add:

. away forthe system administratorto configure the interval
between polls and the timeout threshold
« an easy way to start and stop the monitoringprocess

. abar graph of responsetimes for previous requests; the number
of entries in the history list will be user-configurable

. usernotification when the applicationisin the process of
making a request

. graceful handling of request timeouts

Figure 3.1 shows what the running application will look like once we're
done with all the enhancements.

The code for this application is broken up into three files: the markup
in appmonitor2.html, the JavaScript codein appmonitor2.s,
and the stylesin appmonitor2.css. To start with, we'll link all the
required filesin to appmonitor2.html:

Example 3.1. appmonitor2.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

"https://www.w3.0rg/TR/xhtmll/DTD/xhtmll-
strict.dtd">

<html xmlns="https://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type"

content="text/html; charset=1s0-8859-1"
/>

<title>App Monitor</title>

<script type="text/javascript"
src="ajax.js"></script>

<script type="text/javascript"
src="appmonitor2.js"></script>

<link rel="stylesheet" href="appmonitor2.css"
type="text/css" />
</head>
<body>
</body>

</html>

3 app Monitor - Mozilla Firefox
Fie Edk Wew Go Bookmarks Took Help

@ - | L_, - @] @ L] etpffloc shost sppmanitor 2, beml "": D ao @-

Processing...

8 sec.

3,016 sec.
3.016 sec.
7.01& sac.
7.015 gac.
3.015 sec.
3.016 sec.
(Timeout)
G016 s&c.

(Timeout)

Dane

Figure 3.1. The running application

Organizing the Code

All this new functionality will add a lot more complexity to our app, so
thisis a good time to establish somekind of organization within our
code (a much better option than leaving everything in the global
scope). After all, we're building a fully functional AJAX application, so
we'll want to have it organized properly.

We'll use object-oriented design principles to organize our app. And
we'll start, of course, with the creation of a base class for our
application —the Monitor class.

Typically, we'd create a class in JavaScript like this:

function Monitor () {
this.firstProperty = 'foo';
this.secondProperty = true;
this.firstMethod = function () {

// Do some stuff here
I

}
Thisis a nice, normal constructor function, and we could easily use it
to create aMonitor class (ora bunch of them if we wanted to).

Loss of Scope with setTimeout

Unfortunately, things will not be quite so easy in the case of our
application. We're going to use a lot of calls to setTimeout (as well
as setInterval) in ourapp, so the normal method of creating
JavaScript classes may prove troublesome forour Monitor class.

The setTimeout functionisreally handy for delaying the execution
of a piece of code, but it has a serious drawback: it runsthat codein
an execution context that's different from that of the object. (We
talked a little bit about this problem, called loss of scope, in the last
chapter.)

Thisis a problem because the objectkeyword this hasa new
meaning in the new execution context. So, when you use it within your
class, it suffers from a sudden bout of amnesia — it has noidea what
itis!

This may be a bitdifficultto understand; let's walk through a quick
demonstration so you can actually see thisannoyancein action. You
mightrememberthe ScopeTest class we looked at in the last
chapter. To start with, it was a simple class with one property and one
method:

function ScopeTest () {
this.message = "Greetings from ScopeTest!";
this.doTest = function() {

alert (this.message) ;
}:
}

var test = new ScopeTest()

test.doTest () ;
The result of this code is the predictable JavaScript alert box with the
text “Greetings from ScopeTest!”

Let's changethe doTest method so that it uses setTimeout to
display the messagein one second’s time.

function ScopeTest () {

this.message = "Greetings from ScopeTest!";
this.doTest = function() {
var onTimeout = function() {

alert (this.message) ;
} i
setTimeout (onTimeout, 1000);
}i
}

var test = new ScopeTest()

test.doTest () ;

Instead of our greeting message, the alert box that results from this
version of the code will read “undefined.” Because we

called onTimeout with setTimeout, onTimeout isrunwithina new
execution context. In that execution context, this no longerrefers to
an instance of ScopeTest, sO this.message has no meaning.

The simplest way to deal with this problem of loss of scope is by
makingtheMonitor classa special kind of class, called a singleton.

Singletons with JavaScript

A “singleton” is called that because only a “single” instance of that
class exists at any time. Making a class into a singletonis surprisingly
easy:

var ScopeTest = new function() {

this.message = "Greetings from ScopeTest!";
this.doTest = function() {
var onTimeout = function() {

alert (this.message) ;

b g

setTimeout (onTimeout, 1000);
157

}

Using the keyword new before function creates a “one-shot”
constructor. It creates a singleinstance of ScopeTest, and it's done:
you can'tuse it to create any more ScopeTest objects.

To callthe doTest method of this singleton object, you mustusethe
actual name of the class (since there’s only the one instance of it):

ScopeTest.doTest () ;

That's all well and good, but we haven't solved our loss of scope
problem. If you were to try the code now, you'd get the same
“undefined” message you saw before, because this doesn’trefer to an
instance of ScopeTest. However, using a singleton gives us an easy
way to fix the problem. All we have to do is use the actual name of the
object — instead of the keyword this —inside onTimeout:

var ScopeTest = new function() {
this.message = "Greetings from ScopeTest!";

this.doTest = function () {

var onTimeout = function() {

alert (ScopeTest .message) ;
s

setTimeout (onTimeout, 1000);
¥

}

There's onlyoneinstance of ScopeTest, and we're using its actual
name instead of this, so there’s no confusionaboutwhichinstance
of ScopeTest is beingreferred to here.

When you execute this code, you'll see the expected value of
“Greetings from ScopeTest!" in the JavaScript alert box.

Now, | get tired of using the actual object name throughout my object
code, and | liketo use a shortcut keyword like this wherever | possibly
can. So, usually | create a variable self thatl can useinplace

of this, and pointit to the object name at the top of each method,
like so:

var onTimeout = function () {
var self = ScopeTest;
alert (self.message) ;

Y

Thislooks a bit sillyin a method that's as short as that, butinlonger
chunks of codeit’s nice to have a shorthand solution similarto this
that you can use to refer to your object. | use self, but you could
useme, Or heyYou, or darthVader if you wanted to.

Creating the Monitor Object

Now that we have a plan for code organization that will fix the loss-of-
scope problem from setTimeout, it'stimeto create our
base Monitor class:

Example 3.2. appmonitor2.js (excerpt)

var Monitor = new function() {
this.targetURL = null;
this.pollInterval = null;
this.maxPollEntries = null;
this.timeoutThreshold = null;
this.ajax = new Ajax();
this.start = 0;
this.pollArray = [];
this.pollHand = null;
this.timeoutHand = null;

this.regStatus = Status;

}

The first four

properties, targetURL, pollInterval, maxPollEntries,

and timeoutThreshold, will beinitialized as part of the class's
initialization. They will take on the values defined in the application’s
configuration, which we'll look at in the next section.

Here's a brief rundown on the other properties:

. ajax — Theinstance of our Ajax class that makes the HTTP
requests to the server we're monitoring.

. start — Usedto record the time at which the last requestwas
sent.

+ pollArray — An array that holdsthe server responsetimes;the
constantMAX POLL ENTRIES determinesthenumberofitems
heldin this array.

+ pollHand, timeoutHand - Interval IDs returned by
the setTimeout calls for two different processes — the main
polling process, and the timeout watcher, which controls a user-
defined timeout period for each request.

. regStatus — Used forthe status animation that notifies the
user when a request is in progress. The code that achieved this
is fairly complicated, so we'll be writing another singleton class
to take care of it. The regStatus property pointsto the single
instance of that class.

Configuring and Initializing our Application

A webmaster looking at this application may think that it was quite
cool, but one of the first things he or she would want is an easy way to
configurethe app’s polling interval, or the time that elapses between
requests the app makes to the site it's monitoring. It's easy to
configure the polling interval using a global constant.

To makeit very simple forany user of this script to set the polling
interval, we'll put this section of the codein a script element within the
head of appmonitor2.html:

Example 3.3. appmonitorZ2.html (excerpt)

<script type="text/javascript">

// URL to monitor

var TARGET URL = '/fakeserver.php';
// Seconds between requests

var POLL INTERVAL = 5;

// How many entries bars to show in the bar
graph

var MAX POLL ENTRIES = 10;
// Seconds to wait for server response
var TIMEOUT THRESHOLD = 10;

</script>

You'll notice that these variable names are written in all-caps. This is
an indication thatthey should act like constants — values that are set
early inthe code, and do not change as the code executes. Constants
are a feature of many programming languages but, unfortunately,
JavaScript is not one of them. (Newer versions of JavaScript allow
you to set real constants with the constkeyword, but this facility isn’t
widely supported (even by many modern browsers).) Note that these
constants relate directly to the first four properties of our
daSS:targetURL,pollInterval,maxPollEntrieS,

and timeoutThreshold. These properties will be initialized in our
class’s init method:

Example 3.4. appmonitorZ2.js (excerpt)

this.init = function () {

var self = Monitor;

self.targetURL = TARGET URL;
self.pollInterval = POLL INTERVAL;
self.maxPollEntries = MAX POLL ENTRIES;
self.timeoutThreshold = TIMEOUT THRESHOLD;
self.toggleAppStatus (true) ;
self.regStatus.init ();

Y

As well as initializing some of the properties of our class,

the init method also calls two methods: toggleAppStatus, which
is responsible for starting and stopping the polling, and

the init method of the regStatus object. reqStatus is the instance
of the status singleton class that we discussed a momentago.

This init methodis tied to the window.onload event forthe page,
like so:

Example 3.5. appmonitorZ.js (excerpt)

window.onload = Monitor.init;

Setting Up the Ul

The first version of this application started when the page loaded, and
ran until the browser window was closed. In this version, we want to
give users a button that they can use to toggle the polling process on
or off. The toggleAppStatus method handlesthisforus:

Example 3.6. appmonitorZ.js (excerpt)

this.toggleAppStatus = function (stopped) {
var self = Monitor;
self.toggleButton (stopped) ;
self.toggleStatusMessage (stopped) ;

} i
Okay, so toggleAppsStatus doesn’treally do the work, but it calls
the methods that do: toggleButton, which changes Start buttons

into Stop buttons and vice versa, and toggleStatusMessage, Which
updates the application’s status message. Let's take a closerlook at
each of these methods.

The toggleButton Method

This method toggles the main application between its “Stop” and
“Start” states. It uses DOM-manipulation methods to create the
appropriate button dynamically,assigningitthe correct text and an
onclick eventhandler:

Example 3.7. appmonitorZ.js (excerpt)

this.toggleButton = function (stopped) {
var self = Monitor;

var buttonDiv =
document.getElementById ('buttonArea') ;

var but = document.createElement ('input');

but.type = 'button';
but.className = 'inputButton';
if (stopped) {
but.value = 'Start';
but.onclick = self.pollServerStart;
}
else {
but.value = 'Stop';
but.onclick = self.pollServerStop;
}
if (buttonDiv.firstChild) {
buttonDiv.removeChild (buttonDiv.firstChild) ;
}
buttonDiv.appendChild (but) ;
buttonDiv = null;
I
The only parameter to this method, stopped, can either be true,

indicating thatthe polling has been stopped, or false, indicating that
polling has started.

As you can see in the code for this method, the button is created, and
is set to display Start if the application is stopped, or Stop if the

applicationis currently polling the server. It also assigns
eitherpollServerStart or pollServerStop as the button’s
onclick eventhandler. These event handlers will start or stop the
polling process respectively.

When this method s called
from init (via toggleAppStatus), stopped is setto true sothe
button will display Start when the application is started.

As this code callsfora div withthe ID buttonArea, let's add that to
our markup now:

Example 3.8. appmonitorZ2.html (excerpt)

<body>
<div id="buttonArea'"></div>

</body>
The toggleStatusMessage Method

Showing a button with the word “Start” or “Stop” on it might be all that
programmers or engineers need to figure out the application’s status,
but mostnormal people need a message that's a little clearer and
more obvious in order to work out what's going on with an application.

This upgraded version of the application will display a status message
at the top of the page to tell the user about the overall state of the
application (stoppedor running), and the status of the polling process.
To display the application status, we'll place a nice, clear messagein
the application’s status bar that states App Status: Stopped or App
Status: Running.

In our markup, let’s insert the status message above where the button
appears. We'llinclude only the “App Status” part of the messagein our

markup. The rest of the message will be inserted into a span with the
ID currentAppState:

Example 3.9. appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

</div>
<div id="buttonArea"></div>

</body>
The toggleStatusMessage methodtoggles betweenthe words
that can displayinsidethe currentAppState span:

Example 3.10. appmonitor2.js (excerpt)

this.toggleStatusMessage = function (stopped) {

var statSpan =
document.getElementById('currentAppState');

var msg;
if (stopped) {

msg = 'Stopped';

else {
msg = 'Running';

}

if (statSpan.firstChild) {

statSpan.removeChild(statSpan.firstChild) ;

}

statSpan.appendChild (document.createTextNode (msqg)
) 7

Y
Oncethe Ul is set up, the application is primed and ready to start
polling and recording responsetimes.

Checking your Work In Progress

Now that you've comethis far, it would be nice to be able to see your
work in action, right? Well, unfortunately, we've still got a lot of loose
endsin our application —we've briefly mentioned a singleton class
called Status butwe haven'tcreated it yet, and we still have event
handlers leftto write. But never fear! We can quickly get the
application up and running with a few class and function stubs.

We'll start by creating that Status singleton class with one empty
method.

Example 3.11. appmonitor2.js (excerpt)

var Status = new function () {

this.init = function() {

// don't mind me, I'm Jjust a stub
Y

}
Sincethe Status classis used by the Monitor class, we must
declare status before Monitor.

Then, we'll add our button’s onclick event handlersto

the Monitor class. We'll have them display alert dialogs so that we
know what would be going on if there was anything happening behind
the scenes.

Example 3.12. appmonitor2.js (excerpt)

this.pollServerStart = function() {

alert ('This will start the application polling
the server.');

}s
this.pollServerStop = function() {

alert ('This will stop the application polling the
server."');

}i
With these two simple stubsin place, your application should now be
ready for a test-drive.

©3 App Monitor - Mozilla Firefox

Fie Edk ‘Wew Go Bookmarks Took Help
G;I.l = | L = @ @ | hetpfflocahost fsppmanitar 2, bml | D o E‘,

App Status Stopped

Dane

Figure 3.2. Humble beginnings

When you click the Start button in the display shown in Figure 3.2
you're presented with an alert box that promises greater things to
come. Let's get started making good on those promises.

Polling the Server
The first step is to flesh out the Start button’s onclick event

handler,pollServerStart:

Example 3.13. appmonitor2.js (excerpt)

this.pollServerStart = function() {
var self = Monitor;

self.doPoll ();

self.toggleAppStatus (false) ;

Y

This code immediately callsthe doPo11 method, which, likethe app
monitorwe builtin Chapter 2, Basic XMLHttpRequest, will be
responsibleformakingan HTTP request to poll the server. Once the
request has been sent, the code calls toggleAppStatus, passingit
false to indicate that polling is underway.

Where’s the Poll Interval?

You might wonder why, after all this talk about setting a pollinterval,
our code jumpsrightin with a requestto the server; where’s the time
delay? The answer is that we don’t want a time delay on the very first
request. If users click the button and there’s a ten-second delay before
anything happens,they’ll think the app is broken. We want delays
between all the subsequentrequests that occuronce the application
is running,butwhen the user first clicks that button, we want the
polling to start right away.

The only difference between doPol1 in this version of our app
monitorand the onewe saw in the last chapteris the use of self to
prefix the properties of the class, and the call to setTimeout. Take a
look:

Example 3.14. appmonitor2.js (excerpt)

this.doPoll = function () {
var self = Monitor;
var url = self.targetURL;

var start = new Date();

self.regStatus.startProc();
self.start = start.getTime () ;

self.ajax.doGet (self.targetURL + '?start=' +
self.start,

self.showPoll);

self.timeoutHand =
setTimeout (self.handleTimeout,

self.timeoutThreshold * 1000);

Y

Our call to setTimeout instructsthe browser to

call handleTimeout oncethetimeoutthreshold has passed. We're
also keeping track of the interval ID that’s returned, so we can cancel
our call to handleTimeout when theresponseisreceived

by showPoll.

Here's the code for the showPol1l method, which handles the
response from the server:

Example 3.15. appmonitor2.js (excerpt)

this.showPoll = function(str) {
var self = Monitor;
var diff = 0;

var end = new Date();

clearTimeout (self.timeoutHand) ;
self.regStatus.stopProc (true) ;
if (str == 'ok') {

end = end.getTime () ;

diff = (end - self.start) / 1000;
}
if (self.updatePollArray(diff)) {

self.printResult () ;

}

self.doPollDelay();

I

The first thing this method does is cancel the delayed call

to handleTimeout that was made at the end of doPo11. After this,
we tell ourinstance of the Status class to stop its animation (we'll be
looking at the details of this a little later).

After these calls, showPoll checksto make sure that theresponseis
ok, then calculates how long that responsetook to come back from
the server. The error handling capabilities of the Ajax class should
handle errors from the server, so our script shouldn'treturn anything
otherthan ok ... though it never hurts to make sure!

Once it has calculated the responsetime, showPoll records that
responsetime with updatePollArray, then displaystheresult
with printResult. We'lllook at both of these methods in the next
section.

Finally, we schedule anotherpollin doPol1Delay — a very simple
method that schedules anothercallto doPol11 oncethe pollinterval

has passed:

Example 3.16. appmonitor2.js (excerpt)

this.doPollDelay = function() {
var self = Monitor;
self.pollHand = setTimeout (self.doPoll,

self.pollInterval * 1000);

Y
To check our progress up to this point, we'll need to add a few more
stub methods. First, let's add startProc and stopProc to

the status class:

Example 3.17. appmonitor2.js (excerpt)

var Status = new function () {
this.init = function() {
// don't mind me, I'm just a stub
}i
this.startProc = function() {

// another stub function

}i

this.stopProc = function() {
// another stub function

}i

}
Let's also add a few stub methods to our Monitor class:

Example 3.18. appmonitor2.js (excerpt)

this.handleTimeout = function () {
alert ("Timeout!");
}i
this.updatePollArray = function (responseTime) {

alert ("Recording response time: " +
responseTime) ;

}s
this.printResult = function() {

// empty stub function

} i

Now we're ready to test our progress. Open appmonitor2.html in
your web browser, click Start, and wait for fakeserver.php to wake
from its sleep and send ok back to your page.

You can expect one of two outcomes: eithera responseis received by
your page, and you see a dialog similarto the one shown in Figure 3.3,
or you see the timeout message shown in Figure 3.4.

http: /flocalhost b_<|

Recording response kime: 8,031

.r'qx
Fl | ':

Figure 3.3. A response received by your AJAX application

Don’tworry if you receive the timeout message shown in Figure 3.4.
Keep in mind that in our AJAX application, ourtimeoutthresholdis
currently set to ten seconds, and that fakeserver.php is currently
sleeping fora randomly selected number of seconds between three
and 12. If therandom numberis ten or greater, the AJAX application
will report a timeout.

http:/localhost f'>__<|

st .
A Timeout!

Figure 3.4. Your AJAX application giving up hope

At the moment, we haven’t implemented away to stop the polling, so
you'll need to stop it either by reloading the page or closing your
browser window.

Handling Timeouts
If you've run the code we've written so far, you've probably noticed

that even when a timeoutis reported, you see a message reporting the
request’s responsetime soon afterward. This occurs because
handleTimeoutis nothing buta simple stub at the moment. Let's look
at building on that stub so we don’t get this side-effect.

handleTimeout is basically a simplified version of
showPoll: both methods are triggered by an
asynchronous event (a call to setTimeout and an
HTTP response received by an XMLHttpRequest object
respectively), both methods need to record the
response time (in a timeout's case, this will be
0), both methods need to update the user interface,

and both methods need to trigger the next call to
doPoll. Here's the code for handleTimeout:

Example 3.19. appmonitor2.js (excerpt)

this.handleTimeout = function () {
var self = Monitor;
if (self.stopPoll()) {
self.regStatus.stopProc(true) ;
if (self.updatePollArray(0)) {
self.printResult () ;

}

self.doPollDelay ()

I

Here, handleTimeout calls stopPollto stop ourapplication polling
the server. It records that a timeout occurred, updates the user
interface, and finally sets up anothercall

to doPoll viadoPollDelay. We movedthe code that stops the

pollinginto a separate function because we'll need to revisit it later
and beef it up. At present, the stopPol1 method merely aborts the
HTTP request viathe Ajax class’s abort method; however, there are
a few scenarios that this function doesn’'thandle. We'll address these
later, when we create the complete codeto stop the polling process,
but for the purposes of handling thetimeout, stopPol1 isfine.

Example 3.20. appmonitor2.js (excerpt)

this.stopPoll = function() {
var self = Monitor;
if (self.ajax) {
self.ajax.abort () ;

}

return true;

I
Now, when we reload our application, the timeouts perform exactly as
we expect themto.

The Response Times Bar Graph

Now, to the meat of the new version of our monitoring app! We want
the application to show a list of past responsetimes, notjusta single
entry of the most recent one, and we want to show that listin a way
that’'s quickly and easily readable. A running bargraph display is the
perfect tool for the job.

The Running Listin pollArray

All the response times will go into an array that's stored in

the pollArray property of the Monitor class. We keep this array
updated with the intuitivelynamed updatePollArray method.It'sa
very simple method that looks like this:

Example 3.21. appmonitor2.js (excerpt)

this.updatePollArray = function(pollResult) {
var self = Monitor;
self.pollArray.unshift (pollResult);

1f (self.pollArray.length > self.maxPollEntries)

self.pollArray.pop();

}

return true;

yi
The code is very straightforward, although some of the functions
we've used in it have slightly confusingnames.

Theunshift methodofan Array object putsa new itemin the very
first element of the array, and shifts therest of the array’s contents
over by one position, as shown in Figure 3.5.

Array Ny N

e

{ apple } ,-"(‘"Dr“ge)

0 I 1 _

Array

When the array exceeds the user-defined maximum

length, updatePollArray truncatesit by “popping” an item off the
end. This is achieved by the pop method, which simply deletes the last
item of an array. (Note that the method name pop may seem quite
odd, but it makes more sense once you understand a data structure
called a stack, which stores a number of items that can be accessed
onlyin the reverse of the orderin which they were added to the stack.
We “push” anitem onto a stack to add it, and “pop” an item from a
stack to retrieve it. The pop method was originally designed for
developers who were using arrays as stacks, but here we've
repurposed it simply to delete the last itemin an array.) The reason
why we append items to the top and remove items from the bottom of
the array is that, in our display, we want the mostrecent entries to
appear at the top, and older entries to gradually move down to the
bottom.

Displaying the Results

Once we've updated the resultsin pol1Array, we can display them
usingtheprintResult method. Thisis actually the cool part: the
user will experience first-hand the difference between our AJAX
application and an older-style app that requires an entire page refresh
to update content.

Rendering Page Partials

In AJAX jargon, the chunk of the page that holds thelist of response
times is called a page partial. This refers to an area of a web page
that's updated separately from the rest of the page.

Updating a chunk of a web page in response to an asynchronous
request to the server is called “rendering a page partial.”

The printResult methoditerates through pollArray, and uses
DOM methods to draw the list of poll resultsinsidea div with the
ID pollResults. We'll start by addingthat div to our markup:

Example 3.22. appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

</div>
<div id="pollResults"></div>
<div id="buttonArea"></div>

</body>
Now we're ready forthe printResult method:

Example 3.23. appmonitor2.js (excerpt)

this.printResult = function() {

var self = Monitor;
var polls = self.pollArray;

var pollDiv =
document.getElementById('pollResults')

var entryDiv = null;
var messageDiv = null;
var barDiv = null;

var clearAll = null;
var msgStr = '';

var txtNode = null;

while (pollDiv.firstChild) {

pollDiv.removeChild (pollDiv.firstChild);

}

for (var 1 = 0; 1 < polls.length; i++) {

if (polls[i] == 0) {
msgStr = ' (Timeout) ';

}

else {

msgStr = polls[i] + ' sec.';

}

entryDiv = document.createElement ('div');
messageDiv = document.createElement ('div');

barDiv = document.createElement ('div');

clearAll = document.createElement ('br');
entryDiv.className = 'pollResult';
messageDiv.className = 'time';
barDiv.className = 'bar';
clearAll.className = 'clearAll';
if (polls[i] == 0) {
messageDiv.style.color = '"#933"';
}
else {
messageDiv.style.color = '"#339';
}
barDiv.style.width = (parselnt(polls[i] * 20))
+ 'px';

messageDiv.appendChild (document.createTextNode (
msgStr)) ;

barDiv.appendChild (document.createTextNode ('u00
AQ")) ;

entryDiv. appendChild (messageDiv) ;
entryDiv.appendChild (barDiv) ;
entryDiv.appendChild(clearAll);

pollDiv.appendChild (entryDiv) ;

I
There’s quite a bit here, so let's look at this method step by step.

Example 3.24. appmonitor2.js (excerpt)

while (pollDiv.firstChild) {
pollDiv.removeChild (pollDiv.firstChild) ;

}

After initializing some variables, this method removes everything
from pollDiv: the while loop uses removeChild repeatedly to
delete all the child nodes from pol1Div.

Next comes a simple forloop that jumps throughthe updated array of
results and displays them.

We generate a message for the result of each item in this array. As
you can see below, timeouts (which are recorded as a 0) generate a
message of (Timeout).

Example 3.25. appmonitor2.js (excerpt)

if (pollsf[i] == 0) {
msgStr = ' (Timeout) ';
}
else {
msgStr = polls[i] + ' sec.';

}

Next, we use DOM methods to add the markup for each entry in the
list dynamically. In effect, we construct the following HTML in
JavaScript for each entry in the list:

<div class="pollResult">

<div class="time" style="color: #339;">8.031
sec.</div>

<div class="bar" style="width:
160px;"> </div>

<br class="clearAll"/>

</div>

The width of the bar div changestoreflect the actual responsetime,
and timeouts are shown in red, but otherwise all entries in this listare
identical. Note that you have to put somethinginthe div to causeits
background colorto display. Evenif you give the div a fixed width, the
background colorwill not show if the div is empty. Thisis annoying,
but it's easy to fix: we can fillin the div with a non-breaking space
character.

Let's take a look at the code we'll use to insert this markup:

Example 3.26. appmonitor2.js (excerpt)

entryDiv = document.createElement ('div');
messageDiv = document.createElement ('div');

barDiv = document.createElement ('div');

clearAll = document.createElement ('br');
entryDiv.className = 'pollResult';
messageDiv.className = 'time';
barDiv.className = 'bar';
clearAll.className = 'clearAll';
if (polls[i] == 0) {
messageDiv.style.color = '"#933';
}
else {
messageDiv.style.color = "#339';
}
barDiv.style.width = (parseInt(polls[i] * 20)) +
"px';

messageDiv.appendChild (document.createTextNode (msgS
tr));

barDiv.appendChild (document.createTextNode ('uO0AQ0")
) ;

entryDiv. appendChild (messageDiv) ;
entryDiv.appendChild (barDiv) ;
entryDiv.appendChild (clearAll);

pollDiv.appendChild(entryDiv) ;

This code may seem complicated if you've never used DOM
manipulationfunctions, butit's really quite simple. We use the well-
named createElement methodto create elements;then we assign
values to the properties of each of those element objects.

Just after the i f statement, we can see the code that sets the pixel
width of the bar div according to the number of seconds taken to
generate each response. We multiply thattime figure by 20to get a
reasonable width, but you may want to use a higheror lower number
dependingon how much horizontal space is available on the page.

To add text to elements, we use createTextNode in conjunction
with appendChild, whichis alsousedto place elementsinside other
elements.

createTextNode and Non-breaking Spaces

In the code above, we create a nhon-breaking space using u0020. If we
try to use the normal snbsp; entity here, createTextNode will
attempt to be “helpful” by converting the ampersand to samp;; the
result of thisis that snbsp; is displayed onyour page. The
workaround is to use the escaped unicode non-breaking

space: u00A0.

3 App Monitor - Mozilla Firefox
Fie Edk ‘Wew Go Bookmarks Took Help

<:=|.I = | Lx . @ gl | L hetpfflocahest jsppmanitorz. bl b D s [C,

App Status: Eunning
6015 see.

4015 zee.
10.016 zec.
(Timeout)
(Timeout)
9015 sec
2016 sec
(Tumeout)

8016 zec.

Dane

Figure 3.6. The application starting to take shape

The last piece of the code puts all the div elements together, then
places the pollResultdivinside the pollResults div. Figure 3.6 shows
the running application.

“Hold on a second,” you may well be thinking. “Where’s the bar graph
we're supposedto be seeing?”

The first bar is there, butit's displayed in white on white, which is
pretty useless. Let's make it visible through ourapplication’s CSS:

Example 3.27. appmonitor2.css (excerpt)

.time {
width: 6em;

float: left;

}

.bar {
background: #ddf;

float: left;

}

.clearBoth {
clear: both;

}

The main point of interestinthe CSS isthe float:

left declarations forthe time and bar div elements, which make
up the timelisting and the colored bar in the bar graph. Floatingthem
to the leftis what makes them appear side by side. However, for this

positioning technique to work, an elementwiththe clearBoth class
must appear immediately afterthese two divs.

Thisis where you can see AJAX in action. It uses bits and pieces of all
these differenttechnologies — XMLHt tpRequest, the W3C DOM, and

CSS — wired togetherand controlled with JavaScript. Programmers
often experience the biggest problems with CSS and with the
practicalities of building interface elements in their code.

As an AJAX programmer, you can eithertry to depend on a library to
take care of the CSS for you, or you can learn enough to get the job
done. It's handy to know someone smart who's happy to answer lots
of questions on the topic, or to have a good book on CSS (forexample,
SitePoint’s The CSS Anthology: 101 Essential Tips, Tricks & Hacks).

3 fpp Monitor - Mozilla Firefox

Fie Edkt ‘Wew Go Bookmarks Took Help
1, F —
<"4| = | > - @ wf 1R et ffloc ahost {sppmanitar 2, beml b @ GO C-I,

App Status: Eunning
6015 sec.
5016 sec.
(Timeout)
T.01E sec.
5032 sec.
(Tumeout)
3015 zec.
7016 sec
4016 zec,
10 sec

Dane

Figure 3.7. The beginnings of our bar graph

Now that our CSS is in place, we can see the bar graph in our
application display, as Figure 3.7 illustrates.

Stopping the Application

The final action of the pollserverstart method, after getting the
app running,isto call toggleAppStatus totogglethe appearance of
the application. toggleAppStatus changesthe status displayto
App Status: Running, switches the Start button to a Stop button, and

attaches the pollServerStop methodto the
button’s onclick event.

The pollServerStop method stopsthe ongoing polling process,
then toggles the application back so that it looks likeit's properly
stopped:

Example 3.28. appmonitor2.js (excerpt)

this.pollServerStop = function() {
var self = Monitor;
if (self.stopPoll()) {

self.toggleAppStatus (true) ;

}

self.regStatus.stopProc (false);

}i

This code reuses the stopPoll method we added earlier in the
chapter. At the moment, all that method does is abort the current
HTTP request, whichis fine while we're handling atimeout. However,
this method needs to handle two other scenarios as well.

The first of these scenarios occurs when the method is called during
the pollinterval (that is, after we receive a responseto an HTTP
request, but before the next request is sent). In this scenario, we need
to cancel the delayed call to doPol1.

The second scenario that this method mustbe able to handle arises
when stopPoll is called after it has sent a request, but before it

receives the response. In this scenario, the timeout handlerneeds to
be canceled.

As we keep track of the interval IDs of both calls, we can
modify stopPoll to handlethese scenarios with two calls
0 clearTimeout:

Example 3.29. appmonitor2.js (excerpt)

this.stopPoll = function() {
var self = Monitor;
clearTimeout (self.pollHand) ;
if (self.ajax) {
self.ajax.abort () ;

}

clearTimeout (self.timeoutHand) ;

return true;

I
Now, you should be able to stop and start the polling processjust by
clicking the Start/Stop button beneath the bar graph.

Status Notifications

The ability of AJAX to update content asynchronously, and the fact
that updates may affectonly small areas of the page, make the
display of status notifications acritical part of an AJAX app’s design
and development. Afterall, your app’s users need to know what the
app is doing.

Back in the old days of web development, when an entire page had to
reload in order to reflect any changesto its content, it was perfectly
clear to end users when the application was communicating with the
server. But our AJAX web apps can talk to the server in the
background, whichmeans that users don’t see the complete page
reload that would otherwise indicate that something was happening.

So, how will users of your AJAX app know that the pageis
communicating with the server? Well, instead of the old spinning
globe or waving flag animations that display in the browser chrome,
AJAX applications typically notify users that processing is under way
with the aid of small animations or visual transitions. Usually achieved
with CSS, thesetransitions catch users’ eyes — without being
distracting! — and provide hints about what the applicationis doing.
An important aspect of the good AJAX app designis the development
of these kinds of notifications.

The Status Animation

Since we already have at the top of our application asmall bar that
tells the userifthe app is running or stopped, thisis a fairly logical
place to display a little more status information.

Animations like twirling balls or running dogs are a nice way to
indicate that an application is busy — generally, you'll want to display
an image that uses movementto indicate activity. However, we don't
want to use a cue that’'s going to draw users’ attention away from the
list, or drive people to distraction as they’re trying to read the results,
so we'll just go with the slow, pulsinganimation shownin Figure 3.8.

This animation has the added advantages of being lightweight and
easy to implementin CSS — no Flash player is required, and there's no
bulky GIF image to download frame by tedious frame.

The far right-hand side of the white bar is unused space, which makes
it an ideal place for this kind of notification: it’s at the top of the user

interface, so it’'s easy to see, butit’'s offto theright, so it's out of the
way of people who are trying to read the list of results.

97
F—
Q:’ Processing... C;} Processing... [:l[Processing...

Processing... E> Processing... [Processing...
¢

I, Q /
Processing... C;; Processing... [:‘[Processing... . Q -

I, ,
Done |:> Done E: Done

Figure 3.8. Our pulsing status énimation

To hostthis animation, we'lladd a div with the
ID pollingMessage justbelowthe status message div in our
document;

Example 3.30. appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

</div>
<div id="pollingMessage"></div>
<div id="pollResults"></div>
<div id="buttonArea"></div>

</body>
Add a CSS rule to your style sheet to position this div:

Example 3.31. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.2em;
text-align: center;

}
This animation is now positioned to the right of the page.

When you open the page in your browser, you won'tbe able to see the
animation —it's nothing but a white box on a white background at the
moment. If you'd like to, add some contentto pollingMessage to
see where it's positioned.

setInterval and Loss of Scope

The JavaScript setInterval is an obvious and easy way to handle a task
that occurs repeatedly — forinstance, to control a pulsinganimation.

All the CSS gyrations with setInterval resultin some fairly
interesting and bulky code. So, as | mentioned before, it makes sense
to put the code for the status animationintoits own class

— Status — that we can reference and use from the Monitor class.

Some of the clever developers reading this may already have guessed
that setInterval suffersfromthe same loss-of-scope problems

as setTimeout: the object keyword this becomeslost. Since we
have to deal with only one status animation in our monitoring
application, it makes senseto take the expedient approach, and make

our Status class a singletonclass, justas we did for
the Monitor class.

Setting Up Status

Let's start by adding some properties to the Status stub we've already
written, in order to get the previous code working:

Example 3.32. appmonitor2.js (excerpt)

var Status = new function () {

this.currOpacity = 100;

this.proc = 'done'; // 'proc', 'done' or
'abort'
this.procInterval = null;

this.div = null;
this.init = function() {
// don't mind me, I'm just a stub
}i
this.startProc = function() {
// another stub function
}i

this.stopProc = function() {

I £

}

// another stub function

The Status object has four properties:

The currOpacity property tracks the opacity of

the pollingMessage div. Weuse setInterval to change
the opacity of this div rapidly, which produces the pulsingand
fading effect.

The proc property is a three-state switch that indicates whether
an HTTP request is currently in progress, has been completed
successfully,or was aborted before completion.

The procInterval propertyis for storingtheinterval ID for
the setInterval process that controlsthe animation. We'll use
it to stop the runninganimation.

The div property is a reference to the pollingMessage div.
The status class manipulatesthe pollingMessage div's
CSS properties to create the animation.

Initialization

An init methodis neededto bindthe div property
o pollingMessage:

Example 3.33. appmonitor2.js (excerpt)

this.init = function() {
var self = Status;
self.div =

document.getElementById('pollingMessage') ;

self.setAlpha() ;

Y

The init method also contains a callto a method named setAlpha,
which is required for an IE workaround that we’ll be looking at a bit
later.

Internet Explorer Memory Leaks

DOM elementreferences (variables that pointto div, td,

or span elements and the like) that are used as class properties are a
notorious cause of memory leaks in Internet Explorer. If you destroy
an instance of a class without clearing such properties (by setting
themto null), memory will not be reclaimed.

Let's add to our Monitor class a cleanup method that handles
the window.onunload event, like so:

Example 3.34. appmonitor2.js (excerpt)

window.onunload = Monitor.cleanup;

This method cleans up the status class by calling that
class’s cleanup method and setting the regStatus property
fonull:

Example 3.35. appmonitor2.js (excerpt)

this.cleanup = function() {
var self = Monitor;

self.regStatus.cleanup();

self.regStatus = null;

I
The cleanup methodinthe Status class doesthe IE housekeeping:

Example 3.36. appmonitor2.js (excerpt)

this.cleanup = function() {

Status.div = null;

I

If we don'tset that div reference to null, Internet Explorer will keep
the memory it allocated to that variable in a death grip, and you'll see
memory use balloon each time you reload the page.

In reality, this wouldn’t be much of a problem for our tiny application,
but it can become a seriousissuein large web appsthat have a lot of
DHTML. It's good to get into the habit of cleaningup DOM references
in your code so that this doesn'tbecome an issuefor you.

The displayOpacity Method

The central piece of code in the status classlivesin

the displayOpacity method. This contains the browser-specific
code that’'s necessary to changethe appropriate CSS properties of
the pollingMessage div. Here'sthe code:

Example 3.37. appmonitor2.js (excerpt)

this.displayOpacity = function() {

var self = Status;
var decOpac = self.currOpacity / 100;

if (document.all && typeof window.opera ==
'undefined') {

self.div.filters.alpha.opacity =
self.currOpacity;

}
else {

self.div.style.MozOpacity = decOpac;

}

self.div.style.opacity = decOpac;

}i

The currOpacity property of the objectrepresents the opacity to
whichthe pollingMessage div shouldbe set. Ourimplementation
uses an integer scale ranging from 0 to 100, which is employed by
Internet Explorer, rather than the fractional scale from zero to one
that’'s expected by Mozillaand Safari. This choiceis justa personal
preference;if you preferto use fractional values, by all means do.

In the method, you'll see a test for document.all — a property that's
supported only by IE and Opera — and a test for window. opera,
which, unsurprisingly,is supported only by Opera. As such, only IE
should execute the if clause of this if statement. Inside this IE branch
of the i £ statement, the proprietary alpha.opacity propertyisused
to set opacity, whilein the else clause, we use the
olderMozOpacity property, whichis supported by older Mozilla-
based browsers.

Finally, this method sets the opacity in the standards-compliant way:
usingthe opacity property, which should ultimately be supported in
all standards-compliant browsers.

IE Gotchas

Internet Explorer version 6, being an older browser, suffers a couple of
issues when trying to render opacity-based CSS changes.

Fortunately, the first of these is easily solved by an addition to
ourpollingMessage CSSrule:

Example 3.38. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.2em;
text-align: center;

background: #fff;

}

The addition of the background property fixes the first specific
problem with Internet Explorer. We must set the background color of
an elementif we want to changeits opacity in IE, or the text will
display with jagged edges. Note that setting background to
transparent will not work: it must be set to a specific color.

The second problemiis a little trickier if you want your CSS files to be
valid. IE won't letyou changethe style.alpha.opacity unlessit's

declared inthe style sheet first. Now, if you don’t mind preventing your
style sheets from being passed by the W3C validator, it's easy to fix
this problem by adding another declaration:

Example 3.39. appmonitor2.css (excerpt)

#pollingMessage {
float: right;
width: 80px;
padding: 0.Z2em;
text-align: center;
background: #fff;
filter: alpha (opacity = 100);

}

Unfortunately, this approach generates CSS warnings in browsers that
don’t supportthat proprietary property, such as Firefox 1.5, which
displays CSS warnings in the JavaScript console by default. A solution
that’s better than inserting IE-specific styleinformationinto your
global style sheetis to use JavaScript to add that declaration to

the pollingMessage div's style attributein IE only. That's what
the setAlpha methodthat'scalled in init achieves. Here's the code
forthat method:

Example 3.40. appmonitor2.js (excerpt)

this.setAlpha = function() {
var self = Status;
if (document.all && typeof window.opera ==
'undefined') {
var styleSheets = document.styleSheets;

for (var i = 0; 1 < styleSheets.length; i++)

var rules = styleSheets[i].rules;
for (var jJ = 0; jJ < rules.length; j++) {
1f (rules[]].selectorText ==
'#pollingMessage') {
rules[]].style.filter =
'alpha (opacity = 100)';

return true;

}

return false;

1%

This code, which executes onlyin Internet Explorer, uses

the document.styleSheets array to iterate through each style
sheet that’s linked to the current page. It accesses the rules in each of
those style sheets usingthe rules property, and finds the style we
want by looking at the selectorText property. Onceit has the right
styleinthe rules array, it givesthe filter property the value it
needsto changethe opacity.

Opacity in Opera?

Unfortunately, at the time of writing, even the latest version of Opera
(version 8.5) doesn’t support CSS opacity, so such an animation does
not work in that browser. However, this feature is planned for Opera
version 9.

Running the Animation

The code for the processing animation consists of five methods: the
first three control the “Processing..." animation, while the remaining
two control the “Done” animation. The three methods that control the
“Processing..." animation are:

« startProc, which sets up the “Processing ..." animation and
schedulesrepeated callsto doProc with setInterval

« doProc, which monitors the properties of this class and sets the
current frame of the “Processing..." animation appropriately

« stopProc, which signals that the “Processing...” animation
should cease

The two that control the “Done” animation are:

. startDone sets up the “Done” animationand schedules
repeated calls to doDone with setInterval

. doDone sets the current frame of the “Done” animation and
terminates the animation onceit’'s completed

Starting it Up

Setting the animation up and starting it are jobs for
the startProc method:

Example 3.41. appmonitor2.js (excerpt)

this.startProc = function () {
var self = Status;
self.proc = 'proc';

if (self.setDisplay(false)) {
self.currOpacity = 100;
self.displayOpacity() ;

self.procInterval = setlInterval (self.doProc,
90) ;

}

Y

After setting the proc property to proc (processing),this code calls
the setDisplay method, which sets the colorand content of

the pollingMessage div. We'lltake a closer look

at setDisplay next.

Once the code sets the colorand content of

the pollingMessage div, itinitializesthe div's opacityto 100
(completely opaque)and calls displayOpacity to make this setting
take effect.

Finally, this method calls setInterval to schedulethe next step of
the animation process. Note that, as with setTimeout,

the setInterval call returns aninterval ID. We store thisin
the procInterval property so we can stop the process later.

Both the “Processing ..." and “Done” animations share
the setDisplay method:

Example 3.42. appmonitor2.js (excerpt)

this.setDisplay = function (done) {
var self = Status;
var msg = '';

1f (done) {

msg = 'Done';
self.div.className = 'done';
}
else {
msg = 'Processing...';
self.div.className = 'processing';

}

1f (self.div.firstChild) {

self.div.removeChild(self.div.firstChild) ;

self.div.appendChild (document.createTextNode (msqg)
) 7

return true;

I

Since the only differences between the “Processing ...” and “Done”
states of the pollingMessage div are its color and text, it makes
senseto usethis common function to toggle between the two states
of the pollingMessage div. The colors are controlled by assigning
classesto the pollingMessage div, so we'll needto add CSS class
rules forthe done and processing classes to our style sheet:

Example 3.43. appmonitor2.css (excerpt)

.processing {

color: #339;

border: 1lpx solid #339;
}
.done {

color:#393;

border:1lpx solid #393;

}
Making it Stop

Stopping the animation smoothly requires some specific timing. We
don'twant the animation to stop abruptly right in the middle of a

1’

pulse. We want to stop it in the natural break, when the “Processing ...’
image’s opacity is down to zero.

So the stopProc method for stopping the animation doesn’t actually
stop it per se — it just sets a flag to tell the animation process that it's
time to stop when it reaches a convenient point. Thisis a lot like the
phone calls received by many programmers at the end of the day from
wives and husbandsreminding them to come home when they get to
a logical stopping pointin their code.

Since very little action occurs here, the method is pretty short:

Example 3.44. appmonitor2.js (excerpt)

this.stopProc = function(done) {
var self = Status;

1f (done) {

self.proc = 'done';
}
else {

self.proc = 'abort';

I

This method does have to distinguish between two types of stopping:
a successfully completed request (done) and a request from the user
to stop the application (abort).

The doProc method usesthis flag to figure out whether to display the
“Done” message, or justto stop.

Running the Animation with doProc

The doProc method, which isinvoked at 90 millisecondintervals,
changesthe opacity of the pollingMessage div to producethe
pulsing effect of the processing animation. Here's the code:

Example 3.45. appmonitor2.js (excerpt)

this.doProc = function() {
var self = Status;
if (self.currOpacity == 0) {
if (self.proc == 'proc') {

self.currOpacity = 100;
}
else {
clearInterval (self.procInterval);
if (self.proc == 'done') {
self.startDone() ;

}

return false;

}
self.currOpacity = self.currOpacity - 10;
self.displayOpacity ()

I

This method is dead simple — its main purposeis simply to reduce
the opacity of the pollingMessage div by 10% every timeit's
called.

The firstif statementlooks to see if the div has completely faded
out. If it has, and the animation is still supposed to be running, it
resets the opacity to 100 (fully opaque). Executing this code every 90
milliseconds produces a smooth effect in which

the pollingMessage div fadesout, reappears, and fades out again
— the familiar pulsing effect that shows that the application is busy
doing something.

If the animation is not supposed to continue running, we stop the
animation by calling clearInterval, then,if the proc property is
done, we trigger the “Done” animationwith a call to startDone.

Starting the “Done” Animation with startDone

The startDone method serves the same purpose for the “Done”
animation thatthe startProc method serves for the “Processing..."
animation. It looks remarkably similarto startProc, t00:

Example 3.46. appmonitor2.js (excerpt)

this.startDone = function () {

var self = Status;

if (self.setDisplay (true)) {
self.currOpacity = 100;
self.displayOpacity() ;

self.procInterval = setlInterval (self.doDone,
90) ;

}

I
Thistime, we pass true to setDisplay, which will changethe text
to “Done” and the colorto green.

We then set up callsto dobone with setInterval, which actually
performs the fadeout.

The Final Fade

The code for doDone is significantly simplerthan the code

for doProc. It doesn’thave to process continuously until told to stop,
like doProc does. It justkeeps on reducing the opacity of

the pollingMessage div by 10% until it reaches zero, then stops
itself. Pretty simple stuff:

Example 3.47. appmonitor2.js (excerpt)

this.doDone = function () {

var self = Status;

if (self.currOpacity == 0) {
clearInterval (self.proclInterval);

}

self.currOpacity = self.currOpacity - 10;

self.displayOpacity () ;

3 fpp Monitor - Mozilla Firefox
Fie Edkt ‘Wew Go Bookmarks Took Help

d | = [L,' - E @ L] hetpflocahost sppmanitor 2, bl V: D s E‘,

App Status: Bunning
(Tumeout)
7016 zec.

016 sec

5016 sec.

2015 sec.

e 016 sec

3016 zec.

7.015 sec

{ Limeout)

(Timeout)

Dane

Figure 3.9. The application with a pulsing status indicator

Finally, we're ready to test this code in our browser.

Open appmonitor2.html inyourbrowser, click the Start button, and
you should see a pulsing Processing ... message near the top right-
hand corner of the browser’s viewport, like the one shown in Figure
3.9.

Be Careful with that Poll Interval!

Now that we have an animation runningin the page, we needto be
careful that we don’t start the animation again before the previous one
stops. For this reason, it's highly recommended that you don't

set POLL INTERVAL to anythinglessthantwo seconds.

Styling the Monitor
Now that we've got our application up and running, let'suse CSS to
make it look good. We'll need to add the following markup to achieve

our desired layout:

Example 3.48. appmonitor2.html (excerpt)

<body>
<div id="wrapper">
<div id="main">
<div 1d="status">
<div id="statusMessage">App Status:

</div>
<div id="pollingMessage"></div>
<br class="clearBoth" />
</div>
<div id="pollResults"></div>

<div id="buttonArea"></div>

</div>
</div>

</body>

As you can see, we've added three divs from which we can hang our
styles,and a linebreak to clear the floated application status message
and animation. The completed CSS for this page is as follows; the

styled interface is shownin Figure 3.10:

Example 3.49. appmonitor2.css

body, p, div, td, ul {

font-family: verdana,
serif;

font-size:12px;

}

#fwrapper
padding-top: 24px;

}

#main
width: 360px;
height: 280px;
padding: 24px;

arial,

helvetica, sans-

}

text-align: left;
background: #eee;
border: lpx solid #ddd;

margin:auto;

#status {

}

width: 358px;
height: 24px;
padding: 2px;
background: #fff;
margin-bottom: 20px;

border: 1lpx solid #ddd;

#statusMessage {

font-size: 1llpx;
float: left;
height: 1l6px;
padding: 4px;

text-align: left;

}

color: #999;

#pollingMessage {

}

font-size: 1lpx;
float: right;
width: 80px;
height: 14px;
padding: 4px;
text-align: center;

background: #fff;

#pollResults {

}

width: 360px;

height: 210px;

#buttonArea {

}

text-align: center;

.pollResult {

padding-bottom: 4px;
}
.time {
font-size: 1lpx;
width: 74px;
float: left;
}
.processing {
color: #339;
border: 1lpx solid #333399;
}
.done {
color: #393;
border: lpx solid #393;
}
Joar {
background: #ddf;

float: left;

.inputButton ({
width: 8em;

height: Z2em;

.clearBoth {

clear: both;

3 app Monitor - Mozilla Firefox

Fie Edk Wew Go Bookmarks Took Help
1 F] =
- -8 ©3) [hepiifiocshosjsppmonitor2. b v O [C,
Processing...
8 sec,
3016 sec.
3.01& sac.
7.016 sac.
7.015 sac.
3.015 sec.
3.01& sac.
(Timeout)
6.016 sec.
i_lrn-.nll‘f:;
Dane

Figure 3.10. The completed App Monitor

Summary

Our first working application showed how AJAX can be used to make
multiple requests to a server withoutthe user ever leaving the
currently loaded page. It also gave a fairly realistic picture of the kind
of complexity we have to deal with when performing multiple tasks

asynchronously. Agood example of this complexity was our use

of setTimeout to timethe XMLHttpRequestrequests. This example
provided a good opportunity to explore some of the common
problemsyou’ll encounter as you develop AJAX apps, such as loss of
scope and connection timeouts, and provided practical solutions to
help you deal with them.

That's it for this excerpt from Build Your Own AJAX Web Applications —
don'tforget, you can download this article in .pdf format. The book
has eight chapters in total, and by the end of it, readers will have built
numerous fully functioningweb apps including an online chess game
that multiple players can play inreal time — the book’s Table of
Contents has the full details.

Courtesy: https://www.sitepoint.com/build-your-own-ajax-web-apps/

Modified: 2021.10.04.7.10.AM

Dokoll Solutions, . Inc.

https://www.sitepoint.com/premium/library
https://www.sitepoint.com/show-modal-popup-after-time-delay/
https://www.sitepoint.com/premium/library
https://www.sitepoint.com/premium/library
https://www.sitepoint.com/build-your-own-ajax-web-apps/

